60 resultados para dissolution rate
Resumo:
The geometry, timing, and rate of fluid-flow through carbonate margins and platforms is not well constrained. In this study, we use U concentrations and isotope ratios measured on small volumes of pore-water from Bahamas slope sediment, coupled with existing chlorinity data, to place constraints on the fluid-flow in this region and, by implication, other carbonate platforms. These data also allow an assessment of the behaviour of U isotopes in an unusually well constrained water-rock system. We report pore-water U concentrations which are controlled by dissolution of high-U organic material at shallow depths in the sediment and by reduction of U to its insoluble 4+ state at greater depths. The dominant process influencing pore-water (234U/238U) is alpha recoil. In Holocene sediments, the increase of pore-water (234U/238U) due to recoil provides an estimate of the horizontal flow rate of 11 cm/year, but with considerable uncertainty. At depths in the sediment where conditions are reducing, features in the U concentration and (234U/238U) profiles are offset from one another which constrains the effective diffusivity for U in these sediments to be c. 1-2 * 10**-8 cm**2/s. At depths between the Holocene and these reducing sediments, pore-water (234U/238U) values are unusually low due to a recent increase in the dissolution rate of grain surfaces. This suggests a strengthening of fluid flow, probably due to the flooding of the banks at the last deglaciation and the re-initiation of thermally-driven venting of fluid on the bank top and accompanying recharge on the slopes. Interpretation of existing chlorinity data, in the light of this change in flow rate, constrain the recent horizontal flow rate to be 10.6 ( 3.4) cm/year. Estimates of flow rate from (234U/238U) and Cl[-] are therefore in agreement and suggest flow rates close to those predicted by thermally-driven models of fluid flow. This agreement supports the idea that flow within the Bahamas Banks is mostly thermally driven and suggests that flow rates on the order of 10 cm/year are typical for carbonate platforms where such flow occurs.
Resumo:
Sediment cores retrieved in the Benguela coastal upwelling system off Namibia show very distinct enrichments of solid phase barium at the sulfate/methane transition (SMT). These barium peaks represent diagenetic barite (BaSO4) fronts which form by the reaction of upwardly diffusing barium with interstitial sulfate. Calculated times needed to produce these barium enrichments indicate a formation time of about 14,000 yr. Barium spikes a few meters below the SMT were observed at one of the investigated sites (GeoB 8455). Although this sulfate-depleted zone is undersaturated with respect to barite, the dominant mineral phase of these buried barium enrichments was identified as barite by scanning electron microscopy (SEM). This is the first study which reports the occurrence/preservation of pronounced barite enrichments in sulfate-depleted sediments buried a few meters below the SMT. At site GeoB 8455 high concentrations of dissolved barium in pore water as well as barium in the solid phase were observed. Modeling the measured barium concentrations at site GeoB 8455 applying the numerical model CoTReM reveals that the dissolution rate of barite directly below the SMT is about one order of magnitude higher than at the barium enrichments deeper in the sediment core. This indicates that the dissolution of barite at these deeper buried fronts must be retarded. Thus, the occurrence of the enrichments in solid phase barium at site GeoB 8455 could be explained by decreased dissolution rates of barite due to the changes in the concentration of barite in the sediment, as well as changes in the saturation state of fluids. Furthermore, the alteration of barite into witherite (BaCO3) via the transient phase barium sulfide could lead to the preservation of a former barite front as BaCO3. The calculations and modeling indicate that a relocation of the barite front to a shallower depth occurred between the last glacial maxium (LGM) and the Pleistocene/Holocene transition. We suggest that an upward shift of the SMT occurred at that time, most likely as a result of an increase in the methanogenesis rates due to the burial of high amounts of organic matter below the SMT.
Resumo:
Four volcanic ash-bearing marine sediment cores and one ash-free reference core were examined during research cruise RV Meteor 54/2 offshore Nicaragua and Costa Rica to investigate the chemical composition of pore waters related to volcanic ash alteration. Sediments were composed of terrigenous matter derived from the adjacent continent and contained several distinct ash layers. Biogenic opal and carbonate were only minor components. The terrigenous fraction was mainly composed of smectite and other clay minerals while the pore water composition was strongly affected by the anaerobic degradation of particulate organic matter via microbial sulphate reduction. The alteration of volcanic matter showed only a minor effect on major element concentrations in pore waters. This is in contrast to prior studies based on long sediment cores taken during the DSDP, where deep sediments always showed distinct signs of volcanic ash alteration. The missing signal of ash alteration is probably caused by low reaction rates and the high background concentration of major dissolved ions in the seawater-derived pore fluids. Dissolved silica concentrations were, however, significantly enriched in ash-bearing cores and showed no relation to the low but variable contents of biogenic opal. Hence, the data suggest that silica concentrations were enhanced by ash dissolution. Thus, the dissolved silica profile measured in one of the sediment cores was used to derive the in-situ dissolution rate of volcanic glass particles in marine sediments. A non-steady state model was run over a period of 43 kyr applying a constant pH of 7.30 and a dissolved Al concentration of 0.05 ?M. The kinetic constant (AA) was varied systematically to fit the model to the measured dissolved silica-depth profile. The best fit to the data was obtained applying AA = 1.3 * 10**-U9 mol of Si/cm**2/ s. This in-situ rate of ash dissolution at the seafloor is three orders of magnitude smaller than the rate of ash dissolution determined in previous laboratory experiments. Our results therefore imply that field investigations are necessary to accurately predict natural dissolution rates of volcanic glasses in marine sediments.
Resumo:
Mg/Ca in planktonic foraminifers carries two main signals: calcification temperature and postdepositional test dissolution. Shell dissolution thus distorts water temperature reconstructions made with Mg/Ca in foraminifers. This problem could be resolved by quantifying the impact of carbonate dissolution on Mg/Ca with an independent, temperature-insensitive deep-sea calcite dissolution proxy, such as the Globorotalia menardii fragmentation index (MFI). To test the validity of this approach, we measured Mg/Ca in the tests of several planktonic foraminifers and MFI in core tops collected over a wide geographic region of the tropical Pacific and covering a wide range of deep-sea calcite dissolution and seawater temperature. We confirm that Mg/Ca from different species have different susceptibility to temperature and dissolution. Mg/Ca in surface-dwelling Globigerina bulloides is controlled by calcification temperature and is largely unaffected by carbonate dissolution estimated from MFI. In contrast, Mg/Ca in deeper dwelling G. menardii is minimally sensitive to temperature and dominantly affected by dissolution. Mg/Ca in Neogloboquadrina dutertrei and Pulleniatina obliquiloculata are significantly affected by both temperature and dissolution, and MFI can be effectively used to correct temperature estimates from these species for calcite dissolution. Additional variables besides temperature and dissolution appear to control Mg/Ca in Globorotalia tumida, and their identification is a prerequisite for interpreting elemental shell composition in this species. Combining down-core measurements of Mg/Ca in multiple foraminifer species with MFI provides a powerful tool for reconstructing past changes in the upper water column temperature structure in the tropical Pacific.
Resumo:
Within the framework of the EU-funded BENGAL programme, the effects of seasonality on biogenic silica early diagenesis have been studied at the Porcupine Abyssal Plain (PAP), an abyssal locality located in the northeast Atlantic Ocean. Nine cruises were carried out between August 1996 and August 1998. Silicic acid (DSi) increased downward from 46.2 to 213 µM (mean of 27 profiles). Biogenic silica (BSi) decreased from ca. 2% near the sediment-water interface to <1% at depth. Benthic silicic acid fluxes as measured from benthic chambers were close to those estimated from non-linear DSi porewater gradients. Some 90% of the dissolution occurred within the top 5.5 cm of the sediment column, rather than at the sediment-water interface and the annual DSi efflux was close to 0.057 mol Si/m**2/yr. Biogenic silica accumulation was close to 0.008 mol Si/m**2/yr and the annual opal delivery reconstructed from sedimentary fluxes, assuming steady state, was 0.065 mol Si/m**2/yr. This is in good agreement with the mean annual opal flux determined from sediment trap samples, averaged over the last decade (0.062 mol Si/m**2/yr). Thus ca. 12% of the opal flux delivered to the seafloor get preserved in the sediments. A simple comparison between the sedimentation rate and the dissolution rate in the uppermost 5.5 cm of the sediment column suggests that there should be no accumulation of opal in PAP sediments. However, by combining the BENGAL high sampling frequency with our experimental results on BSi dissolution, we conclude that non-steady state processes associated with the seasonal deposition of fresh biogenic particles may well play a fundamental role in the preservation of BSi in these sediments. This comes about though the way seasonal variability affects the quality of the biogenic matter reaching the seafloor. Hence it influences the intrinsic dissolution properties of the opal at the seafloor and also the part played by non-local mixing events by ensuring the rapid transport of BSi particles deep into the sediment to where saturation is reached.
Resumo:
Bulk dissolution rates for sediment from ODP Site 984A in the North Atlantic are determined using the 234U/238U activity ratios of pore water, bulk sediment, and leachates. Site 984A is one of only several sites where closely spaced pore water samples were obtained from the upper 60 meters of the core; the sedimentation rate is high (11-15 cm/ka), hence the sediments in the upper 60 meters are less than 500 ka old. The sediment is clayey silt and composed mostly of detritus derived from Iceland with a significant component of biogenic carbonate (up to 30%). The pore water 234U/238U activity ratios are higher than seawater values, in the range of 1.2 to 1.6, while the bulk sediment 234U/238U activity ratios are close to 1.0. The 234U/238U of the pore water reflects a balance between the mineral dissolution rate and the supply rate of excess 234U to the pore fluid by a-recoil injection of 234Th. The fraction of 238U decays that result in a-recoil injection of 234U to pore fluid is estimated to be 0.10 to 0.20 based on the 234U/238U of insoluble residue fractions. The calculated bulk dissolution rates, in units of g/g/yr are in the range of 0.0000004 to 0.000002 1/yr. There is significant down-hole variability in pore water 234U/238U activity ratios (and hence dissolution rates) on a scale of ca. 10 m. The inferred bulk dissolution rate constants are 100 to 1000 times slower than laboratory-determined rates, 100 times faster than rates inferred for older sediments based on Sr isotopes, and similar to weathering rates determined for terrestrial soils of similar age. The results of this study suggest that U isotopes can be used to measure in situ dissolution rates in fine-grained clastic materials. The rate estimates for sediments from ODP Site 984 confirm the strong dependence of reactivity on the age of the solid material: the bulk dissolution rate (R_d) of soils and deep-sea sediments can be approximately described by the expression R_d ~ 0.1 1/age for ages spanning 1000 to 500,000,000 yr. The age of the material, which encompasses the grain size, surface area, and other chemical factors that contribute to the rate of dissolution, appears to be a much stronger determinant of dissolution rate than any single physical or chemical property of the system.
Resumo:
The long-term stability of ceramic materials that are considered as potential nuclear waste forms is governed by heterogeneous surface reactivity. Thus, instead of a mean rate, the identification of one or more dominant contributors to the overall dissolution rate is the key to predict the stability of waste forms quantitatively. Direct surface measurements by vertical scanning interferometry (VSI) and their analysis via material flux maps and resulting dissolution rate spectra provide data about dominant rate contributors and their variability over time. Using pyrochlore (Nd2Zr2O7) pellet dissolution under acidic conditions as an example, we demonstrate the identification and quantification of dissolution rate contributors, based on VSI data and rate spectrum analysis. Heterogeneous surface alteration of pyrochlore varies by a factor of about 5 and additional material loss by chemo-mechanical grain pull-out within the uppermost grain layer. We identified four different rate contributors that are responsible for the observed dissolution rate range of single grains. Our new concept offers the opportunity to increase our mechanistic understanding and to predict quantitatively the alteration of ceramic waste forms.
Resumo:
Ocean acidification is thought to be a major threat to coral reefs: laboratory evidence and CO2 seep research has shown adverse effects on many coral species, although a few are resilient. There are concerns that cold-water corals are even more vulnerable as they live in areas where aragonite saturation (Omega ara) is lower than in the tropics and is falling rapidly due to CO2 emissions. Here, we provide laboratory evidence that net (gross calcification minus dissolution) and gross calcification rates of three common cold-water corals, Caryophyllia smithii, Dendrophyllia cornigera, and Desmophyllum dianthus, are not affected by pCO2 levels expected for 2100 (pCO2 1058 µatm, Omega ara 1.29), and nor are the rates of skeletal dissolution in D. dianthus. We transplanted D. dianthus to 350 m depth (pHT 8.02; pCO2 448 µatm, Omega ara 2.58) and to a 3 m depth CO2 seep in oligotrophic waters (pHT 7.35; pCO2 2879 µatm, Omega ara 0.76) and found that the transplants calcified at the same rates regardless of the pCO2 confirming their resilience to acidification, but at significantly lower rates than corals that were fed in aquaria. Our combination of field and laboratory evidence suggests that ocean acidification will not disrupt cold-water coral calcification although falling aragonite levels may affect other organismal physiological and/or reef community processes.