407 resultados para core coding region


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The IMAGES core MD99-2343, recovered from a sediment drift north of the island of Minorca, in the north-western Mediterranean Sea, holds a high-resolution sequence that is perfectly suited to study the oscillations of the overturning system of the Western Mediterranean Deep Water (WMDW). Detailed analysis of grain-size and bulk geochemical composition reveals the sensitivity of this region to climate changes at both orbital and centennial-millennial temporal scales during the last 50 kyr. The dominant orbital pattern in the K/Al record indicates that sediment supply to the basin was controlled by the insolation evolution at 40°N, which forced changes in the fluvial regime, with more efficient sediment transport during insolation maxima. This orbital control also modulated the long-term pattern of the WMDW intensity as illustrated by the silt/clay ratio. However, deep convection was particularly sensitive to climatic changes at shorter time-scales, i.e. to centennial-millennial glacial and Holocene oscillations that are well documented by all the paleocurrent intensity proxies (Si/Al, Ti/Al and silt/clay ratios). Benthic isotopic records (d13C and d18O) show a Dansgaard-Oeschger (D-O) pattern of variability of WMDW properties, which can be associated with changing intensities of the deep currents system. The most prominent reduction on the WMDW overturning was caused by the post-glacial sea level rise. Three main scenarios of WMDW overturning are revealed: a strong mode during D-O Stadials, a weak mode during D-O Interstadials and an intermediate mode during cooling transitions. In addition, D-O Stadials associated with Heinrich events (HEs) have a very distinct signature as the strong mode of circulation, typical for the other D-O Stadials, was never reached during HE due to the surface freshening induced by the inflowing polar waters. Consequently, the WMDW overturning system oscillated around the intermediate mode of circulation during HE. Though surface conditions were more stable during the Holocene, the WMDW overturning cell still reacted synchronously to short-lived events, as shown by increments in the planktonic d18O record, triggering quick reinforcements of the deep water circulation. Overall, these results highlight the sensitivity of the WMDW to rapid climate change which in the recent past were likely induced by oceanographic and atmospheric reorganizations in the North Atlantic region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Quantitative coccolithophore analyses were performed in core MD01-2446, located in the mid-latitude North Atlantic, to reconstruct climatically induced sea-surface water conditions throughout Marine Isotope Stages (MIS) 14-9. The data are compared to new and available paleoenvironmental proxies from the same site as well as other nearby North Atlantic records that support the coccolithophore signature at glacial-interglacial to millennial climate scale. Total coccolithophore absolute abundance increases during interglacials but abruptly drops during the colder glacial phases and deglaciations. Coccolithophore warm-water taxa (wwt) indicate that MIS11c and MIS9e experienced warmer and more stable conditions throughout the whole photic zone compared to MIS13. MIS11 was a long-lasting warmer and stable interglacial characterized by a climate optimum during MIS11c when a more prominent influence of the subtropical front at the site is inferred. The wwt pattern also suggests distinct interstadial and stadial events lasting about 4-10 kyr. The glacial increases of Gephyrocapsa margereli-G. muellerae 3-4 µm along with higher values of Corg, additionally supported by the total alkenone abundance at Site U1313, indicate more productive surface waters, likely reflecting the migration of the polar front into the mid-latitude North Atlantic. Distinctive peaks of G. margereli-muellerae (> 4 µm), C. pelagicus pelagicus, Neogloboquadrina pachyderma left coiling, and reworked nannofossils, combined with minima in total nannofossil accumulation rate, are tracers of Heinrich-type events during MIS12 and MIS10. Additional Heinrich-type events are suggested during MIS12 and MIS14 based on biotic proxies, and we discuss possible iceberg sources at these times. Our results improve the understanding of mid-Brunhes paleoclimate and the impact on phytoplankton diversity in the mid-latitude North Atlantic region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The palaeoclimatic conditions during the Last Glacial Maximum (LGM) of southern South America and especially latitudinal shifts of the southern westerly wind belt are still discussed controversially. Longer palaeoclimatic records covering the Late Quaternary are rare. A particularly sensitive area to Late Quaternary climatic changes is the Norte Chico, northern Chile, because of its extreme climatic gradients. Small shifts of the present climatic zonation could cause significant variations of the terrestrial sedimentary environment which would be recorded in marine terrigenous sediments. To unveil the history of shifting climatic zones in northern Chile, we present a sedimentological study of a marine sediment core (GeoB 3375-1) from the continental slope off the Norte Chico (27.5°S). Sedimentological investigations include bulk- and silt grain-size determinations by sieving, Atterberg separation, and detailed SediGraph analyses. Additionally, clay mineralogical parameters were obtained by X-ray diffraction methods. The 14C-dated core, covering the time span from approximately 10,000 to 120,000 cal. yr B.P., consists of hemipelagic sediments. Terrigenous sedimentological parameters reveal a strong cyclicity, which is interpreted in terms of variations of sediment provenance, modifications of the terrestrial weathering regimes, and modes of sediment input to the ocean. These interpretations imply cyclic variations between comparatively arid climates and more humid conditions with seasonal precipitation for northern Chile (27.5°S) through the Late Quaternary. The cyclicity of the terrigenous sediment parameters is strongly dominated by precessional cycles. For the palaeoclimatic signal, this means that more humid conditions coincide with maxima of the precession index, as e.g. during the LGM. Higher seasonal precipitation for this part of Chile is most likely derived from frontal winter rain of the Southern Westerlies. Thus, the data presented here favour not only an equatorward shift of this atmospheric circulation system during the LGM, but also precession-controlled latitudinal movements throughout the Late Quaternary. Precessional forcing of latitudinal movements of the westerly atmospheric circulation system may be conceivable through teleconnections to the Northern Hemisphere monsoonal system in the Atlantic Ocean region.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present a deuterium excess (d) record from an ice core drilled on a small ice cap in Svalbard in 1997. The core site is located at Lomonosovfonna at 1255 m asl, and the analyzed time series spans the period 1400-1990 A.D. The record shows pronounced multidecadal to centennial-scale variations coherent with sea surface temperature changes registered in the subtropical to southern middle-latitude North Atlantic during the instrumental period. We interpret the negative trend in the deuterium excess during the 1400s and 1500s as an indication of cooling in the North Atlantic associated with the onset of the Little Ice Age. Consistently positive anomalies of d after 1900, peaking at about 1950, correspond with well-documented contemporary warming. Yet the maximum values of deuterium excess during 1900-1990 are not as high as in the early part of the record (pre-1550). This suggests that the sea surface temperatures during this earlier period of time in the North Atlantic to the south of approximately 45°N were at least comparable with those registered in the 20th century before the end of the 1980s. We examine the potential for a cold bias to exist in the deuterium excess record due to increased evaporation from the local colder sources of moisture having isotopically cold signature. It is argued that despite a recent oceanic warming, the contribution from this local moisture to the Lomonosovfonna precipitation budget is still insufficient to interfere with the isotopic signal from the primary moisture region in the midlatitude North Atlantic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lake La Thuile, in the Northern French Prealps (874 m a.s.l.), provides an 18 m long sedimentary sequence spanning the entire Lateglacial/Holocene period. The high resolution multi-proxy (sedimentological, palynological, geochemical) analysis of the uppermost 6.2 meters reveals the Holocene dynamics of erosion in the catchment in response to landscape modifications. The mountain belt is at relevant altitude to study past human activities and the watershed is sufficiently disconnected from large valleys to capture a local sedimentary signal. From 12,000 to 10,000 cal. BP (10 to 8 ka cal. BC), the onset of hardwood species triggered a drop in erosion following the Lateglacial/Holocene transition. From 10,000 to 4500 cal. BP (8 to 2.5 ka cal. BC), the forest became denser and favored slope stabilization while erosion processes were very weak. A first erosive phase was initiated at ca . 4500 cal. BP without evidence of human presence in the catchment. Then, the forest declined at approximately 3000 cal. BP, suggesting the first human influence on the landscape. Two other erosive phases are related to anthropic activities: approximately 2500 cal. BP (550 cal. BC) during the Roman period and after 1600 cal. BP (350 cal. AD) with a substantial accentuation in the Middle Ages. In contrast, the lower erosion produced during the Little Ice Age, when climate deteriorations are generally considered to result in an increased erosion signal in this region, suggests that anthropic activities dominated the erosive processes and completely masked the natural effects of climate on erosion in the late Holocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A benthic isotope record has been measured for core SO75-26KL from the upper Portuguese margin (1099 m water depth) to monitor the response of thermohaline overturn in the North Atlantic during Heinrich events. Evaluating benthic delta18O in TS diagrams in conjunction with equilibrium deltac fractionation implies that advection of Mediterranean outflow water (MOW) to the upper Portuguese margin was significantly reduced during the last glacial (< 15% compared to 30% today). The benthic isotope record along core SO75-26KL therefore primarily monitors variability of glacial North Atlantic conveyor circulation. The 14C-accelerator mass spectrometry ages of 13.54±.07 and 20.46±.12 ka for two ice-rafted detritus (IRD) layers in the upper core section and an interpolated age of 36.1 ka for a third IRD layer deeper in the core are in the range of published 14C ages for Heinrich events H1, H2, and H4. Marked depletion of benthic delta13C by 0.7-1.1 per mil during the Heinrich events suggests reduced thermohaline overturn in the North Atlantic during these events. Close similarity between meltwater patterns (inferred from planktonic delta18O) at Site 609 and ventilation patterns (inferred from benthic delta13C) in core SO75-26KL implies coupling between thermohaline overturn and surface forcing, as is also suggested by ocean circulation models. Benthic delta13C starts to decrease 1.5-2.5 kyr before Heinrich events Hl and H4, fully increased values are reached 1.5-3 kyr after the events, indicating a successive slowdown of thermohaline circulation well before the events and resumption of the conveyor's full strength well after the events. Benthic delta13C changes in the course of the Heinrich events show subtle maxima and minima suggesting oscillatory behavior of thermohaline circulation, a distinct feature of thermohaline instability in numerical models. Inferrred gradual spin-up of thermohaline circulation after Hl and H4 is in contrast to abrupt wanning in the North Atlantic region that is indicated by sudden increases in Greenland ice core delta18O and in marine faunal records from the northern North Atlantic. From this we infer that thermohaline circulation can explain only in part the rapid climatic oscillations seen in glacial sections of the Greenland ice core record.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To obtain insight into character and potential forcing of short-term climatic and oceanographic variability in the southern Italian region during the "Roman Classical Period" (60 BC-AD 200), climatic and environmental reconstructions based on a dinoflagelate cyst record from a well dated site in the Gulf of Taranto located at the distal end of the Po-river discharge plume have been established with high temporal resolution. Short-term fluctuations in accumulation rates of the Adriatic Surface Water species Lingulodinium machaerophorum, the freshwater algae Concentricystes and species resistant to aerobic degradation indicate that fluctuations in the trophic state of the upper waters are related to river discharge of northern and eastern Italian rivers which in turn are strongly related to precipitation in Italy. The dinoflagellate cyst association indicates that local sea surface temperatures which in this region are strongly linked to local air temperatures were slightly higher than today. We reconstruct that sea surface temperatures have been relatively high and stable between 60 BC-AD 90 and show a decreasing trend after AD 90. Fluctuations in temperature and river discharge rates have a strong cyclic character with main cyclicities of 7-8 and 11 years. We argue that these cycles are related to variations of the North Atlantic Oscillation climate mode. A strong correlation is observed with global variation in Delta14C anomalies suggesting that solar variability might be one of the major forcings of the regional climate. Apart from cyclic climate variability we observed a good correlation between non-cyclic temperature drops and global volcanic activity indicating that the latter forms an additional major forcing factor of the southern Italian climate during the Roman Classical Period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high-resolution planktonic foraminifer record from a core recovered from the South China Sea (SCS) (Sonne 17938-2: 19°47.2'N, 117° 32.3E; 2840 m; Delta t c. 250-1000 years) shows rapid millennial-scale changes in the western Pacific marginal sea climate during the last 30,000 years. The SCS is the largest western Pacific marginal sea off the southeast Asian continent, the area today dominated by seasonal monsoon changes. Quantitative analyses of planktonic foraminifer faunal abundance data frorn the core indicate large downcore variations in the relative abundances of the dominant taxa since about 30,000 years ago in the isotope stage 3. Further analyses indicate that the abundance of G. inflata, a good indicator species for cold SST (~13°-19°C) and deep MLD (~100-125 m) waters shows abrupt shifts. During stages 2 and 3, the abundance record of G. infiata tends to be punctuated by quasi-periodie short intervals (~2000-3000 yrs) where its abundance reaches 15% or greater, superimposed on generally low (5-10%) background values. This pattern suggests an instability of surface ocean conditions of the SCS during the past 30,000 years. The abrupt abundance changes of G. infiata correlate well with similar climatic changes observed from a GISP2 ice core 8180, and North Atlantic core DSDP 609 N. pachyderma (s.) and lithic grain abundances during 'Heinrich evcnts'. These results suggest that the millennial-scale variability of climate is not peculiar to the Atlantic region. Apparently, the rapid SCS climatic changes during Heinrich events are driven by effective mechanisms, of particularly the effects of shifts in the latitudinal position of the Siberia High Pressure System.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high-resolution sea surface temperature and paleoproductivity reconstruction on a sedimentary record collected at 36°S off central-south Chile (GeoB 7165-1, 36°33'S, 73°40'W, 797 m water depth, core length 750 cm) indicates that paleoceanographic conditions changed abruptly between 18 and 17 ka. Comparative analysis of several cores along the Chilean continental margin (30°-41°S) suggests that the onset and the pattern of deglacial warming was not uniform off central-south Chile due to the progressive southward migration of the Southern Westerlies and local variations in upwelling. Marine productivity augmented rather abruptly at 13-14 ka, well after the oceanographic changes.We suggest that the late deglacial increase in paleoproductivity off central-south Chile reflects the onset of an active upwelling system bringing nutrient-rich, oxygen-poor Equatorial SubsurfaceWater to the euphotic zone, and a relatively higher nutrient load of the Antarctic Circumpolar Current. During the Last Glacial Maximum, when the Southern Westerlies were located further north, productivity off central-south Chile, in contrast to off northern Chile, was reduced due to direct onshore-blowing winds that prevented coastal upwelling and export production.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A study of density and porosity is presented for the 1285-m-long AND-1B core recovered from a flexural moat in the McMurdo Sound (Antarctica) in order to interpret sediment consolidation in an ice-proximal location on the Antarctic shelf. Various lithologies imply environmental changes from open marine to subglacial, and are numerically expressed in high-resolution whole-core wet-bulk density (WBD). Grain density data interpolated from discrete samples range from 2.14 to 3.85 g/cm3 and are used to calculate porosity from WBD in order to avoid the 5%-15% overestimation and underestimation of porosities obtained by standard methods. The trend of porosity extends from 0.5 near the top (Pleistocene) to 0.2 at the bottom (Miocene). Porosity fluctuations in different lithologies are superimposed with 0.2-0.3 in sequences younger than ca. 1 Ma and 0.5-0.8 in Pliocene diatomites. The AND-1B porosities and void ratios of Pliocene diatomites and Pleistocene mudstones exhibit a large negative offset compared to modern lithological analogs and their consolidation trends. This offset cannot be explained in terms of the effective stress at the AND-1B site. The effective stress ranges from 0 to 4000 kPa in the upper 600 m, and reaches 13,000 kPa at the base of the AND-1B hole. We suggest an excess of effective overburden stress of ~1700 and ~6000 kPa to explain porosities in Pliocene diatomites and Pleistocene mudstones, respectively. This is interpreted as glacial preconsolidation by subsequently grounded ice sheets under subpolar to polar, followed by colder polar types of glaciations. Information on Miocene consolidation is sparse due to alteration by diagenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study presents high-resolution foraminiferal-based sea surface temperature, sea surface salinity and upper water column stratification reconstructions off Cape Hatteras, a region sensitive to atmospheric and thermohaline circulation changes associated with the Gulf Stream. We focus on the last 10,000 years (10 ka) to study the surface hydrology changes under our current climate conditions and discuss the centennial to millennial time scale variability. We observed opposite evolutions between the conditions off Cape Hatteras and those south of Iceland, known today for the North Atlantic Oscillation pattern. We interpret the temperature and salinity changes in both regions as co-variation of activities of the subtropical and subpolar gyres. Around 8.3 ka and 5.2-3.5 ka, positive salinity anomalies are reconstructed off Cape Hatteras. We demonstrate, for the 5.2-3.5 ka period, that the salinity increase was caused by the cessation of the low salinity surface flow coming from the north. A northward displacement of the Gulf Stream, blocking the southbound low-salinity flow, concomitant to a reduced Meridional Overturning Circulation is the most likely scenario. Finally, wavelet transform analysis revealed a 1000-year period pacing the d18O signal over the early Holocene. This 1000-year frequency band is significantly coherent with the 1000-year frequency band of Total Solar Irradiance (TSI) between 9.5 ka and 7 ka and both signals are in phase over the rest of the studied period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding recent Arctic climate change requires detailed information on past changes, in particular on a regional scale. The extension of the depth-age relation of the Akademii Nauk (AN) ice core from Severnaya Zemlya (SZ) to the last 1100 yr provides new perspectives on past climate fluctuations in the Barents and Kara seas region. Here, we present the easternmost high-resolution ice-core climate proxy records (d18O and sodium) from the Arctic. Multi-annual AN d18O data as near-surface air-temperature proxies reveal major temperature changes over the last millennium, including the absolute minimum around 1800 and the unprecedented warming to a double-peak maximum in the early 20th century. The long-term cooling trend in d18O is related to a decline in summer insolation but also to the growth of the AN ice cap as indicated by decreasing sodium concentrations. Neither a pronounced Medieval Climate Anomaly nor a Little Ice Age are detectable in the AN d18O record. In contrast, there is evidence of several abrupt warming and cooling events, such as in the 15th and 16th centuries, partly accompanied by corresponding changes in sodium concentrations. These abrupt changes are assumed to be related to sea-ice cover variability in the Barents and Kara seas region, which might be caused by shifts in atmospheric circulation patterns. Our results indicate a significant impact of internal climate variability on Arctic climate change in the last millennium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Agulhas Bank region, south of Africa, is an oceanographically important and complex area. The leakage of warm saline Indian Ocean water into the South Atlantic around the southern tip of Africa is a crucial factor in the global thermohaline circulation. Foraminiferal assemblage, stable isotope and sedimentological data from the top 10 m of core MD962080, recovered from the western Agulhas Bank Slope, are used to indicate changes in water mass circulation in the southeastern South Atlantic for the last 450 kyr. Sedimentological and planktonic foraminiferal data give clear signals of cold water intrusions. The benthic stable isotope record provides the stratigraphic framework and indicates that the last four climatic cycles are represented (i.e. down to marine isotope stage (MIS) 12). The planktonic foraminiferal assemblages bear a clear transitional to subantarctic character with Globorotalia inflata and Neogloboquadrina pachyderma (dextral) being the dominant taxa. Input of cold, subantarctic waters into the region by means of leakage through the Subtropical Convergence, as part of Agulhas ring shedding, and a general cooling of surface waters is suggested by increased occurrence of the subantarctic assemblage during glacial periods. Variable input of Indian Ocean waters via the Agulhas Current is indicated by the presence of tropical/subtropical planktonic foraminiferal species Globoquadrina dutertrei, Globigerinoides ruber (alba) and Globorotalia menardii with maximum leakage occurring at glacial terminations. The continuous presence of G. menardii throughout the core suggests that the exchange of water from the South Indian Ocean to the South Atlantic Ocean was never entirely obstructed in the last 450 kyr. The benthic carbon isotope record and sediment textural data reflect a change in bottom water masses over the core location from North Atlantic Deep Water to Upper Southern Component Water. Planktonic foraminiferal assemblages and sediment composition indicate a profound change in surface water conditions over the core site approximately 200-250 kyr BP, during MIS 7, from mixed subantarctic and transitional water masses to overall warmer surface water conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Indian Summer Monsoon (ISM) is a major global climatic phenomenon. Long-term precipitation proxy records of the ISM, however, are often fragmented and discontinuous, impeding an estimation of the magnitude of precipitation variability from the Last Glacial to the present. To improve our understanding of past ISM variability, we provide a continuous reconstructed record of precipitation and continental vegetation changes from the lower Ganges-Brahmaputra-Meghna catchment and the Indo-Burman ranges over the last 18,000 years (18 ka). The records derive from a marine sediment core from the northern Bay of Bengal (NBoB), and are complemented by numerical model results of spatial moisture transport and precipitation distribution over the Bengal region. The isotopic composition of terrestrial plant waxes (dD and d13C of n-alkanes) are compared to results from an isotope-enabled general atmospheric circulation model (IsoCAM) for selected time slices (pre-industrial, mid-Holocene and Heinrich Stadial 1). Comparison of proxy and model results indicate that past changes in the dD of precipitation and plant waxes were mainly driven by the amount effect, and strongly influenced by ISM rainfall. Maximum precipitation is detected for the Early Holocene Climatic Optimum (EHCO; 10.5-6 ka BP), whereas minimum precipitation occurred during the Heinrich Stadial 1 (HS1; 16.9-15.4 ka BP). The IsoCAM model results support the hypothesis of a constant moisture source (i.e. the NBoB) throughout the study period. Relative to the pre-industrial period the model reconstructions show 20% more rain during the mid-Holocene (6 ka BP) and 20% less rain during the Heinrich Stadial 1 (HS1), respectively. A shift from C4-plant dominated ecosystems during the glacial to subsequent C3/C4-mixed ones during the interglacial took place. Vegetation changes were predominantly driven by precipitation variability, as evidenced by the significant correlation between the dD and d13C alkane records. When compared to other records across the ISM domain, precipitation and vegetation changes inferred from our records and the numerical model results provide evidence for a coherent regional variability of the ISM from the Last Glacial to the present.