30 resultados para Single Domain Mechanical Model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

During Leg 125, scientists drilled two serpentinite seamounts: Conical Seamount in the Mariana forearc and Torishima Forearc Seamount in the Izu-Bonin forearc. Grain densities of the serpentinized peridotites range from 2.44 to 3.02 g/cm**3. The NRM intensity of the serpentinized peridotites ranges from 0.01 to 0.59 A/m and that of serpentine sediments ranges from 0.01 to 0.43 A/m. Volume susceptibilities of serpentinized peridotites range from 0.05 * 10**-3 SI to 9.78 * 10**-3 SI and from 0.12 * 10**-3 to 4.34 * 10**-3 SI in the sediments. Koenigsberger ratios, a measure of the relative contributions of remanent vs. induced magnetization to the magnetic anomaly, vary from 0.09 to 80.93 in the serpentinites and from 0.06 to 4.74 in the sediments. The AF demagnetization behavior of the serpentinized peridotites shows that a single component of remanence (probably a chemical remanence carried by secondary magnetite) can be isolated in many samples that have a median destructive field less than 9.5 mT. Multiple remanence components are observed in other samples. Serpentine sediments exhibit similar behavior. Comparison of the AF demagnetization of saturation isothermal remanence and NRM suggests that the serpentinized peridotites contain both single-domain and multidomain magnetite particles. The variability of the magnetic properties of serpentinized peridotites reflects the complexity of magnetization acquired during serpentinization. Serpentinized peridotites may contribute to magnetic anomalies in forearc regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diagenesis has extensively affected the magnetic mineral inventory of organic-rich late Quaternary sediments in the Niger deep-sea fan. Changes in concentration, grain size, and coercivity document modifications of the primary magnetic mineral assemblages at two horizons. The first front, the modern iron redox boundary, is characterized by a drastic decline in magnetic mineral content, coarsening of the grain size spectrum, and reduction in coercivity. Beneath a second front, the transition from the suboxic to the sulfidic anoxic domain, a further but less pronounced decrease in concentration and bulk grain size occurs. Finer grains and higher coercive magnetic constituents substantially increase in the anoxic environment. Low- and high-temperature experiments were performed on bulk sediments and on extracts which have also been examined by X-ray diffraction. Thermomagnetic analyses proved ferrimagnetic titanomagnetites of terrigenous provenance as the principal primary magnetic mineral components. Their broad range of titanium contents reflects the volcanogenic traits of the Niger River drainage areas. Diagenetic alteration is not only a grain size selective process but also critically depends on titanomagnetite composition. Low-titanium compounds are less resistant to diagenetic dissolution. Intermediate titanium content titanomagnetite thus persists as the predominant magnetic mineral fraction in the sulfidic anoxic sediments. At the Fe redox boundary, precipitation of authigenic, possibly bacterial, magnetite is documented. The presence of hydrogen sulfide in the pore water suggests a formation of secondary magnetic iron sulfides in the anoxic domain. Grain size-specific data argue for a gradual development of a superparamagnetic and single-domain iron sulfide phase in this milieu, most likely greigite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of studies of Holocene samples,submarine basaltic glass (SBG) is thought to be an ideal paleointensity recorder because it contains unaltered single domain magnetic inclusions that yield Thellier paleointensity data of exceptional quality. To be useful as a recorder of the long-term geomagnetic field, older SBG must retain these optimal properties. Here, we examine this issue through rock magnetic and transmission electron microscope (TEM) analyses of Cretaceous SBG recovered at Ocean Drilling Program Site 1203 (northwestern Pacific Ocean). These SBG samples have very low natural remanent magnetization intensities (NRM <50 nAm**2/g) and TEM analyses indicate a correspondingly low concentration of crystalline inclusions. Thellier experiments on samples with the strongest NRM intensity (>5*10**-11 Am**2) show a rapid acquisition of thermoremanent magnetization (TRM) with respect to NRM demagnetization. Taken at face value,this behavior implies magnetization in a very weak (617 WT) ambient field. But monitoring of magnetic hysteresis properties during the Thellier experiments (on subsamples of the SBG samples used for paleointensity determinations) indicates systematic variations in values over the same temperature range where the rapid TRM acquisition is observed. A similar change in properties during heating is observed on monitor SBG specimens using low-temperature data: with progressive heatings the Verwey transition becomes more distinct. We suggest that these experimental data record the partial melting and neocrystallization of magnetic grains in SBG during the thermal treatments required by the Thellier method,resulting in paleointensity values biased to low values. We further propose that this process is pronounced in Cretaceous and Jurassic SBG (relative to Holocene SBG) because devitrification on geologic time scales (i.e., tens of millions of years) lowers the transition temperature at which the neocrystallization can commence. Magnetic hysteresis monitoring may provide a straightforward means of detecting the formation of new magnetic inclusions in SBG during Thellier experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paleomagnetic and rock-magnetic analyses from discrete samples of carbonate sites on the Queensland Plateau were used to determine magnetic polarity reversal stratigraphy and the nature of magnetization in these sediments. Magnetic polarity zones were correlated with the geomagnetic polarity time scale in the upper portions of cores at Sites 812 through 814, usually back to a late Pliocene age. Loss of reliable directional data was coincidental with a major decrease in magnetic intensity, below which, no stable polarity zones could be identified. The intensity reduction is either an in-situ alteration of magnetic grains, or an input signal representing progressive increase in the magnetic component of Queensland Plateau sediments. Although not conclusive at this point, the geochemical conditions and differing age of intensity reduction support the former hypothesis. Rock-magnetic analysis of carbonate sediments suggests that ultrafine-grained magnetite or maghemite crystals is an important carrier of remanence and may be biogenic in origin. Application of a recently calibrated anhysteretic remanent magnetization test to assess configuration of single-domain crystal within a natural matrix indicates that cementation (ooze-chalk-limestone) may be important in post-depositional changes affecting magnetostatic grain interaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present detailed paleomagnetic and rock magnetic results of rock samples recovered during Leg 173. The Leg 173 cores display a multicomponent magnetization nature. Variations in magnetic properties correlate with changes in lithology that result from differences in the abundance and size of magnetic minerals. The combined investigation suggests that the magnetic properties of the "fresher" peridotite samples from Site 1070 are controlled mainly by titanomagnetite, with a strong Verwey transition in the vicinity of 110 K, and with field- and frequency-dependent susceptibility curves that resemble those of titanomagnetites. These results are in excellent agreement with thermomagnetic characteristics where titanomagnetites with Curie temperature ~580°C were identified from the "fresher" peridotites. In contrast to the magnetic properties observed from the "fresher" peridotites, the low-temperature curves for the "altered" peridotites did not show any Verwey transition. Thermomagnetic analysis using the high-temperature vibrating sample magnetometer also failed to show evidence for titanomagnetites. The remanent magnetization is carried by a thermally unstable mineral that breaks down at ~420°C, probably maghemite. The field- and frequency-dependent relationships are also directly opposite to those in the reversal zone, with no signs of titanomagnetite characteristics. Altogether, these rock magnetic data seem to be sensitive indicators of alteration and support the contention that maghemite is responsible for the magnetic signatures displayed in the altered peridotites of the upper section. The magnetic minerals of the basement rocks from Sites 1068, 1069, and 1070 are of variable particle size but fall within the pseudo-single-domain size range (0.2-14 µm). The average natural remanent magnetization (NRM) intensity of recovered serpenitinized peridotite is typically on the order of 20 mA/m for samples from Site 1068, but ~120 mA/m for samples from Site 1070. The much stronger magnetization intensity of Site 1070 is apparently in excellent agreement with the observed magnetic anomaly high. Nearly half of the NRM intensity remained after 400°C demagnetization, suggesting that the remanence can contribute significantly to the marine magnetic anomaly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed rock magnetic investigation has been carried out on Deep Sea Drilling Project (DSDP) pelagic sediments from the Central Equatorial Pacific. This comprises hysteresis and thermomagnetic measurements, Lowrie-Fuller test and, for the first time, ferromagnetic resonance (FMR). Nearly stochiometric magnetite in two grain size fractions, single domain (SD) and multi domain (MD), has been deduced to be the carrier of magnetic remanence. Comparatively strong paramagnetic contributions are carried by pyrite, being identified by X-ray analysis. The statistical analysis of paleomagnetic parameters (NRM, MDF, initial susceptibility, Königsberger ratio Q) from a large number (> 1000) of samples, supported by hysteresis measurements, indicates a latitude and sedimentation rate dependent ratio of SD/MD grains. Possible sources for the magnetic constituents are discussed in terms of bacterial, volcanic, meteoritic and authigenic origin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetotactic bacteria biomineralize magnetic minerals with precisely controlled size, morphology, and stoichiometry. These cosmopolitan bacteria are widely observed in aquatic environments. If preserved after burial, the inorganic remains of magnetotactic bacteria act as magnetofossils that record ancient geomagnetic field variations. They also have potential to provide paleoenvironmental information. In contrast to conventional magnetofossils, giant magnetofossils (most likely produced by eukaryotic organisms) have only been reported once before from Paleocene-Eocene Thermal Maximum (PETM; 55.8 Ma) sediments on the New Jersey coastal plain. Here, using transmission electron microscopic observations, we present evidence for abundant giant magnetofossils, including previously reported elongated prisms and spindles, and new giant bullet-shaped magnetite crystals, in the Southern Ocean near Antarctica, not only during the PETM, but also shortly before and after the PETM. Moreover, we have discovered giant bullet-shaped magnetite crystals from the equatorial Indian Ocean during the Mid-Eocene Climatic Optimum (~40 Ma). Our results indicate a more widespread geographic, environmental, and temporal distribution of giant magnetofossils in the geological record with a link to "hyperthermal" events. Enhanced global weathering during hyperthermals, and expanded suboxic diagenetic environments, probably provided more bioavailable iron that enabled biomineralization of giant magnetofossils. Our micromagnetic modelling indicates the presence of magnetic multi-domain (i.e., not ideal for navigation) and single domain (i.e., ideal for navigation) structures in the giant magnetite particles depending on their size, morphology and spatial arrangement. Different giant magnetite crystal morphologies appear to have had different biological functions, including magnetotaxis and other non-navigational purposes. Our observations suggest that hyperthermals provided ideal conditions for giant magnetofossils, and that these organisms were globally distributed. Much more work is needed to understand the interplay between magnetofossil morphology, climate, nutrient availability, and environmental variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbonate sediments from the Kerguelen Plateau (ODP Leg 120) of Eocene to Pliocene age were investigated with rock magnetic, petrographic and geochemical methods to determine the carriers of remanent magnetization. Magnetic methods showed that the major magnetic minerals were titanomagnetites slightly larger than single domain particles. Submicrometre to micrometre-size grains of titanomagnetite were identified as inclusions in volcanic glass particles or as crystals in lithic clasts. Volcanic fallout ash particles formed the major fraction of the magnetic extract from each sediment sample. Three groups of volcanic ashes were identified: trachytic ashes, basaltic ashes with sideromelane and tachylite shards, and palagonitic ashes. These three groups could be equally well defined based on their magnetic hysteresis properties and alternating field demagnetization curves. The highest coercivities of all samples were found for the tachylite, due to the submicrometre-size titanomagnetite inclusions in the matrix. Trachytic ashes had intermediate magnetic properties between the single-domain-type tachylites and the palagonitic (altered) basaltic ashes with low coercivities. Samples which contained mixtures of these different volcanic ashes could be distinguished from the three types of ashes based on their magnetic characteristics. There was neither evidence of biogenic magnetofossils in the transmission electron micrographs nor did we find magnetic particles derived from continental Antarctica. The presence of dispersed volcanic fallout ashes between visible ash layers suggests continuous explosive volcanic activity on the Kerguelen Plateau in the South Indian Ocean since the early Eocene. The continuous fallout of volcanic ash from explosive volcanism on the Kerguelen Archipelago is the source of the magnetic particles and thus responsible for the magnetostratigraphy of the nannofossil oozes drilled during Leg 120.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rock magnetic measurements were performed on sediments above 20 meters below seafloor (mbsf) (general) and above 2.5 mbsf (detailed) at Sites 1109, 1110, and 1115 (Ocean Drilling Program Leg 180) in the western Woodlark Basin. Rock magnetic parameters imply the presence of magnetite as a principal magnetic mineral in the sediments. The hysteresis ratios lay in the pseudo-single domain field and generally showed the trend close to that for the mixture of single domain and multidomain magnetite The sediments in the oxidized zones at the top at Sites 1109 and 1115 provided a different trend in the logarithmic plot of the hysteresis ratios, and the oxidized samples were characterized by higher coercivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foulden Maar is a highly resolved maar lake deposit from the South Island of New Zealand comprising laminated diatomite punctuated by numerous diatomaceous turbidites. Basaltic clasts found in debris flow deposits at the base of the cored sedimentary sequence yielded two new 40Ar/39Ar dates of 24.51±0.24 Ma and 23.38±0.24 Ma (2sigma). The younger date agrees within error with a previously published 40Ar/39Ar date of 23.17±0.19 Ma from a basaltic dyke adjacent to the maar crater. The diatomite is inferred to have been deposited over several tens of thousands of years in the latest Oligocene/earliest Miocene, and may have overlapped with the period of rapid glaciation and subsequent deglaciation of Antarctica known as the Mi-1 event. Sediment magnetic properties and SEM measurements indicate that the magnetic signal is dominated by pseudo-single domain pyrrhotite. The most likely source of detrital pyrrhotite is schist country rock fragments from the inferred tephra ring created by the phreatomagmatic eruption that formed the maar. Variations in magnetic concentration and lamina thickness indicate a decrease in erosional input and increase in diatom productivity throughout the depositional period, suggesting a long-term (tens of thousands of years) climatic change in New Zealand in the latest Oligocene/earliest Miocene.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Geostrophic surface velocities can be derived from the gradients of the mean dynamic topography-the difference between the mean sea surface and the geoid. Therefore, independently observed mean dynamic topography data are valuable input parameters and constraints for ocean circulation models. For a successful fit to observational dynamic topography data, not only the mean dynamic topography on the particular ocean model grid is required, but also information about its inverse covariance matrix. The calculation of the mean dynamic topography from satellite-based gravity field models and altimetric sea surface height measurements, however, is not straightforward. For this purpose, we previously developed an integrated approach to combining these two different observation groups in a consistent way without using the common filter approaches (Becker et al. in J Geodyn 59(60):99-110, 2012, doi:10.1016/j.jog.2011.07.0069; Becker in Konsistente Kombination von Schwerefeld, Altimetrie und hydrographischen Daten zur Modellierung der dynamischen Ozeantopographie, 2012, http://nbn-resolving.de/nbn:de:hbz:5n-29199). Within this combination method, the full spectral range of the observations is considered. Further, it allows the direct determination of the normal equations (i.e., the inverse of the error covariance matrix) of the mean dynamic topography on arbitrary grids, which is one of the requirements for ocean data assimilation. In this paper, we report progress through selection and improved processing of altimetric data sets. We focus on the preprocessing steps of along-track altimetry data from Jason-1 and Envisat to obtain a mean sea surface profile. During this procedure, a rigorous variance propagation is accomplished, so that, for the first time, the full covariance matrix of the mean sea surface is available. The combination of the mean profile and a combined GRACE/GOCE gravity field model yields a mean dynamic topography model for the North Atlantic Ocean that is characterized by a defined set of assumptions. We show that including the geodetically derived mean dynamic topography with the full error structure in a 3D stationary inverse ocean model improves modeled oceanographic features over previous estimates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, not least because they lack or misrepresent physical processes that are specific to high latitudes. The Arctic boundary layer in winter has been observed to be in either a radiatively clear or cloudy state: The radiatively clear state is characterized by strong surface radiative cooling leading to the build-up of surface-based temperature inversions, whereas the cloudy state occurs when cloud liquid water is present in the atmospheric column, allowing little or no surface radiative cooling and leading to weaker and typically elevated temperature inversions. Many large-scale models have been shown to lack the cloudy state, and some do substantially underestimate stability in the clear state. We here present results from the first Lagrangian ARCtic air FORMation experiment (Larcform 1), a GASS (Global atmospheric system studies) single-column model intercomparison which reproduces these biases of large-scale models in an idealised setup.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The recently proposed global monsoon hypothesis interprets monsoon systems as part of one global-scale atmospheric overturning circulation, implying a connection between the regional monsoon systems and an in-phase behaviour of all northern hemispheric monsoons on annual timescales (Trenberth et al., 2000). Whether this concept can be applied to past climates and variability on longer timescales is still under debate, because the monsoon systems exhibit different regional characteristics such as different seasonality (i.e. onset, peak, and withdrawal). To investigate the interconnection of different monsoon systems during the pre-industrial Holocene, five transient global climate model simulations have been analysed with respect to the rainfall trend and variability in different sub-domains of the Afro-Asian monsoon region. Our analysis suggests that on millennial timescales with varying orbital forcing, the monsoons do not behave as a tightly connected global system. According to the models, the Indian and North African monsoons are coupled, showing similar rainfall trend and moderate correlation in rainfall variability in all models. The East Asian monsoon changes independently during the Holocene. The dissimilarities in the seasonality of the monsoon sub-systems lead to a stronger response of the North African and Indian monsoon systems to the Holocene insolation forcing than of the East Asian monsoon and affect the seasonal distribution of Holocene rainfall variations. Within the Indian and North African monsoon domain, precipitation solely changes during the summer months, showing a decreasing Holocene precipitation trend. In the East Asian monsoon region, the precipitation signal is determined by an increasing precipitation trend during spring and a decreasing precipitation change during summer, partly balancing each other. A synthesis of reconstructions and the model results do not reveal an impact of the different seasonality on the timing of the Holocene rainfall optimum in the different sub-monsoon systems. They rather indicate locally inhomogeneous rainfall changes and show, that single palaeo-records should not be used to characterise the rainfall change and monsoon evolution for entire monsoon sub-systems.