39 resultados para Rhizocephalan barnacle
Resumo:
High-nutrient tropical carbonate systems are known to produce sediments that, in terms of skeletal composition, are reminiscent of their extra-tropical counterparts. Such carbonate systems and associated carbonate grain assemblages in the tropics are rare in the present-day world. Nonetheless, it is crucial to gain a better understanding of those ecosystems, including their drivers and players because such settings potentially represent models for ancient depositional systems as well as for predicted future environmental conditions. One of the modern occurrences of eutrophic tropical carbonate systems is the northern Mauritanian Shelf. The marine environment is characterized by an eastern boundary upwelling system that pushes cool and nutrient-rich intermediate waters onto a wide epicontinental platform (Golfe d'Arguin) where the waters warm up to tropical temperatures. The resulting facies is mixed carbonate-siliciclastic with a dominant foramol association grading into bimol and barnamol grain assemblages in the shallowest areas forming the Banc d'Arguin. Besides this cool water-related heterozoan association, the carbonate sediment is characterized by tropical molluskan species, while chlorozoan biota (e.g., corals and algal symbiont-bearing foraminifers) are entirely absent. We here present a first comprehensive facies analysis of this model example of eutrophic tropical carbonates. Furthermore, we reconstruct the loci of carbonate production and provide a conclusive depositional model of the Banc d'Arguin that received little attention to date due to its poorly accessible nature.
Resumo:
Ongoing zooplankton research at the Plymouth Marine Laboratory has established a time series of zooplankton species since 1988 at L4, a coastal station off Plymouth. Samples were collected by vertical net hauls (WP2 net, mesh 200 µm; UNESCO 1968) from the sea floor (approximately 50 m) to the surface and stored in 4% formalin. Much of the zooplankton analysis has been to the level of "major taxonomic groups" only, and a number of different analysts have participated over the years. The level of expertise has generally been consistent, but the user should be aware that levels of taxonomic discrimination may vary during the course of the dataset. The dominant calanoid copepods are generally well discriminated to species throughout. Calanus has not been routinely examined for species determination, the assumption being that the local population is entirely composed of Calanus helgolandicus. In certain years there has been a particular interest in Temora stylifera, Centropages cherchiae and other species reflected in the dataset. The lack of records in other previous years does not necessarily reflect species absence. We view it as essential for all users of L4 plankton data to establish and maintain contact with the nominated current data originators as well as fully consulting the metadata. While not impinging on free data access, this ensures that this large, species-rich but slightly complex species database is being used in the correct way, and any potential issues with the data are clarified. Furthermore, a proper dialogue with these local experts on the time series will enable where appropriate the most recent sampling timepoints to be used. The data can be downloaded from BODC or from doi:10.1594/PANGAEA.778092 as files for each year by searching for "L4 zooplankton". The most comprehensive dataset is the version downloadable directly from this page. The entire set of zooplankton samples is stored at the Plymouth Marine Laboratory in buffered formalin, and may be available for further taxonomic analysis on request.
Resumo:
The carbon (C) sink strength of arctic tundra is under pressure from increasing populations of arctic breeding geese. In this study we examined how CO2 and CH4 fluxes, plant biomass and soil C responded to the removal of vertebrate herbivores in a high arctic wet moss meadow that has been intensively used by barnacle geese (Branta leucopsis) for ca. 20 years. We used 4 and 9 years old grazing exclosures to investigate the potential for recovery of ecosystem function during the growing season (July 2007). The results show greater above- and below-ground vascular plant biomass within the grazing exclosures with graminoid biomass being most responsive to the removal of herbivory whilst moss biomass remained unchanged. The changes in biomass switched the system from net emission to net uptake of CO2 (0.47 and -0.77 µmol/m**2/s in grazed and exclosure plots, respectively) during the growing season and doubled the C storage in live biomass. In contrast, the treatment had no impact on the CH4 fluxes, the total litter C pool or the soil C concentration. The rapid recovery of the above ground biomass and CO2 fluxes demonstrates the plasticity of this high arctic ecosystem in terms of response to changing herbivore pressure.
Resumo:
Three selected diamictite samples recovered within sequence group S3 at Sites 1097 (Sample 178-1097A-27R-1, 35-58 cm) and 1103 (Samples 178-1103A-31R-2, 0-4 cm, and 36R-3, 4-8 cm) of Ocean Drilling Program Leg 178 have been investigated by scanning electron microscope, electron microprobe, and 40Ar-39Ar laser-heating techniques. They contain variable proportions of fragments of volcanic rock groundmass (mostly in the range of 100-150 µm) with textures ranging from microcrystalline to ipocrystalline. Their rounded shapes indicate mechanical reworking. Fresh groundmass glasses, recognized only in grains from samples of Site 1103, show mainly a subalkaline affinity on the basis of total alkali-silica variations. However, they are characterized by relatively high TiO2 and P2O5 contents (1.4-2.8 and 0.1-0.9 wt%, respectively). Because of the small size of homogeneous grains (100-150 µm), they were not suitable for single-grain total fusion 40Ar-39Ar analyses. The incremental laser-heating technique was applied to milligram-sized samples (only for Samples 178-1097A-27R-1, 35-58 cm, and 178-1103A-36R-3, 4-8 cm) and to various small fractions (each consisting of 10 grains for the sample from Site 1097 and 30 grains for samples from Site 1103). The latter approach resulted in more effective resolution of sample heterogeneity. Argon ages from the small fractions show significantly different ranges in the three samples: 75-173 Ma for Sample 178-1097A-27R-1, 35-58 cm, 18-57 Ma for Sample 178-1103A-31R-2, 0-4 cm, and 7.6-50 Ma for Sample 178-1103A-36R-3, 4-8 cm. Ca/K ratios derived from argon isotopes at Site 1103 suggest that the data mainly refer to outgassing of groundmass glass. At Site 1103, we observe an overall apparent age increase with decreasing sample depth. This is compatible with glacial erosion that affected with time deeper levels of a volcanic sequence previously deposited on the continent. The youngest apparent age of 7.6 ± 0.7 Ma detected close to the bottom of Hole 1103A (340 meters below seafloor [mbsf]) is compatible with the age range of the diatom Actinocyclus ingens v. ovalis Zone (6.3-8.0 Ma) determined for the interval 320-355 mbsf and with the maximum ages derived from strontium isotope composition of barnacle fragments obtained at 262-263 mbsf at the same site. Nevertheless, this age cannot be taken as the maximum youngest age of the volcanic sequence sampled by glacial erosion or as the maximum age for the deposition of the Sequence S3 at 340 mbsf unless validated by further research.
Resumo:
Although conventional sediment parameters (mean grain size, sorting, and skewness) and provenance have typically been used to infer sediment transport pathways, most freshwater, brackish, and marine environments are also characterized by abundant sediment constituents of biological, and possibly anthropogenic and volcanic, origin that can provide additional insight into local sedimentary processes. The biota will be spatially distributed according to its response to environmental parameters such as water temperature, salinity, dissolved oxygen, organic carbon content, grain size, and intensity of currents and tidal flow, whereas the presence of anthropogenic and volcanic constituents will reflect proximity to source areas and whether they are fluvially- or aerially-transported. Because each of these constituents have a unique environmental signature, they are a more precise proxy for that source area than the conventional sedimentary process indicators. This San Francisco Bay Coastal System study demonstrates that by applying a multi-proxy approach, the primary sites of sediment transport can be identified. Many of these sites are far from where the constituents originated, showing that sediment transport is widespread in the region. Although not often used, identifying and interpreting the distribution of naturally-occurring and allochthonous biologic, anthropogenic, and volcanic sediment constituents is a powerful tool to aid in the investigation of sediment transport pathways in other coastal systems.
Resumo:
Heterozoan carbonates are typical for extratropical sedimentary systems. However, under mesotrophic to eutrophic conditions, heterozoan carbonates also form in tropical settings. Nevertheless, such heterozoan tropical sedimentary systems are rare in the modern world and therefore are only poorly understood to date. Here a carbonate depositional system is presented where nutrient-rich upwelling waters push onto a wide shelf. These waters warm up in the shelf, giving rise to the production and deposition of tropical heterozoan facies. The carbonate facies on this shelf are characterized by a mixture of tropical and cosmopolitan biogenic sedimentary grains. Study of facies and taxonomy are the key for identifying and characterizing tropical heterozoan carbonates and for distinguishing them from their coolwater counterparts, in particular in the past where the oceanography cannot be determined directly.
Resumo:
We investigated the impacts of warming and elevated pCO2 on newly settled Amphibalanus improvisus from Kiel Fjord, an estuarine ecosystem characterized by significant natural pCO2 variability. In two experiments, juvenile barnacles were maintained at two temperature and three pCO2 levels (20/24°C, 700-2.140 µatm) for 8 weeks in a batch culture and at four pCO2 levels (20°C, 620-2.870 µatm) for 12 weeks in a water flow-through system. Warming as well as elevated pCO2 hardly affected growth or the condition index of barnacles, although some factor combinations led to temporal significances in enhanced or reduced growth with an increase in pCO2. While warming increased the shell strength of A. improvisus individuals, elevated pCO2 had only weak effects. We demonstrate a strong tolerance of juvenile A. improvisus to mean acidification levels of about 1,000 µatm pCO2 as is already naturally experienced by the investigated barnacle population.
Resumo:
Ocean acidification is expected to decrease calcification rates of bivalves. Nevertheless in many coastal areas high pCO2 variability is encountered already today. Kiel Fjord (Western Baltic Sea) is a brackish (12-20 g kg-1) and CO2 enriched habitat, but the blue mussel Mytilus edulis dominates the benthic community. In a coupled field and laboratory study we examined the annual pCO2 variability in this habitat and the combined effects of elevated pCO2 and food availability on juvenile M. edulis growth and calcification. In the laboratory experiment, mussel growth and calcification were found to chiefly depend on food supply, with only minor impacts of pCO2 up to 3350 µatm. Kiel Fjord was characterized by strong seasonal pCO2 variability. During summer, maximal pCO2 values of 2500 µatm were observed at the surface and >3000 µatm at the bottom. However, the field growth experiment revealed seven times higher growth and calcification rates of M. edulis at a high pCO2 inner fjord field station (mean pCO2 ca. 1000 µatm) in comparison to a low pCO2 outer fjord station (ca. 600 µatm). In addition, mussels were able to outcompete the barnacle Amphibalanus improvisus at the high pCO2 site. High mussel productivity at the inner fjord site was enabled by higher particulate organic carbon concentrations. Kiel Fjord is highly impacted by eutrophication, which causes bottom water hypoxia and consequently high seawater pCO2. At the same time, elevated nutrient concentrations increase the energy availability for filter feeding organisms such as mussels. Thus M. edulis can dominate over a seemingly more acidification resistant species such as A. improvisus. We conclude that benthic stages of M. edulis tolerate high ambient pCO2 when food supply is abundant and that important habitat characteristics such as species interactions and energy availability need to be considered to predict species vulnerability to ocean acidification.