82 resultados para Petroleum well drilling


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediments from the Gulf of California contain sufficient amounts of thermally reactive organic matter to be considered fair-to-good potential petroleum source rocks. While sediments deposited within the present oxygen-minimum zone have the greatest amounts of organic matter, those deposited below the oxygen-minimum contain sufficient organic matter to be considered potential source rocks. The organic matter in the sediment is almost exclusively marine, Type II kerogen. Different techniques of determining kerogen composition produce generally compatible answers, although pyrolysis gives somewhat misleading results. Elemental analysis of the kerogen and vitrinite reflectance measurements indicate that the organic matter is not buried to sufficiently great depth for significant petroleum generation, despite the high temperature gradients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eocene siliceous and calcareous phytoplankton, with emphasis on silicoflagellates, were studied in 62 samples from DSDP Sites 612 and 613 on the continental slope and rise off New Jersey. The mid-latitude assemblages correlate well with assemblages from California, Peru, and offshore of southern Brazil, but are distinctly different from high-latitude cold-water assemblages of the Falkland Plateau off southern Argentina. Coccoliths and silicoflagellates provide evidence for the presence of a fairly complete middle and upper Eocene sequence, represented by a composite of Sites 612 and 613. A major unconformity occurs at the middle Eocene to upper Eocene contact at Site 612. The genus Bachmannocena Locker is emended and proposed as a replacement for genus Mesocena Ehrenberg for ring silicoflagellates. Six new silicoflagellates and one new diatom are described: Bachmannocena apiculata monolineata Bukry, n. subsp., Corbisema amicula Bukry, n. sp., C. bimucronata elegans Bukry, n. subsp., C. hastata incohata Bukry, n. subsp., C. jerseyensis Bukry, n. sp., Dictyocha acuta Bukry, n. sp., and Coscinodiscus eomonoculus Bukry, n. sp. Also, one new replacement name, B. paulschulzn Bukry, nom. nov., and 24 new combinations are proposed for genus Bachmannocena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earth's largest reactive carbon pool, marine sedimentary organic matter, becomes increasingly recalcitrant during burial, making it almost inaccessible as a substrate for microorganisms, and thereby limiting metabolic activity in the deep biosphere. Because elevated temperature acting over geological time leads to the massive thermal breakdown of the organic matter into volatiles, including petroleum, the question arises whether microorganisms can directly utilize these maturation products as a substrate. While migrated thermogenic fluids are known to sustain microbial consortia in shallow sediments, an in situ coupling of abiotic generation and microbial utilization has not been demonstrated. Here we show, using a combination of basin modelling, kinetic modelling, geomicrobiology and biogeochemistry, that microorganisms inhabit the active generation zone in the Nankai Trough, offshore Japan. Three sites from ODP Leg 190 have been evaluated, namely 1173, 1174 and 1177, drilled in nearly undeformed Quaternary and Tertiary sedimentary sequences seaward of the Nankai Trough itself. Paleotemperatures were reconstructed based on subsidence profiles, compaction modelling, present-day heat flow, downhole temperature measurements and organic maturity parameters. Today's heat flow distribution can be considered mainly conductive, and is extremely high in places, reaching 180 mW/m**2. The kinetic parameters describing total hydrocarbon generation, determined by laboratory pyrolysis experiments, were utilized by the model in order to predict the timing of generation in time and space. The model predicts that the onset of present day generation lies between 300 and 500 m below sea floor (5100-5300 m below mean sea level), depending on well location. In the case of Site 1174, 5-10% conversion has taken place by a present day temperature of ca. 85 °C. Predictions were largely validated by on-site hydrocarbon gas measurements. Viable organisms in the same depth range have been proven using 14C-radiolabelled substrates for methanogenesis, bacterial cell counts and intact phospholipids. Altogether, these results point to an overlap of abiotic thermal degradation reactions going on in the same part of the sedimentary column as where a deep biosphere exists. The organic matter preserved in Nankai Trough sediments is of the type that generates putative feedstocks for microbial activity, namely oxygenated compounds and hydrocarbons. Furthermore, the rates of thermal degradation calculated from the kinetic model closely resemble rates of respiration and electron donor consumption independently measured in other deep biosphere environments. We deduce that abiotically driven degradation reactions have provided substrates for microbial activity in deep sediments at this convergent continental margin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At Site 535, the four lithologic units of Cretaceous age are controlled by two types of sedimentologic facies: (1) the massive light-colored limestones or marly limestones in which the total organic carbon (TOC) content is low and the organic matter more or less oxidized and (2) laminated dark facies in which the TOC content is higher and associated with a well-preserved organic matter of Type II origin. Very little typical Type III organic matter occurs in the whole series from late Berriasian to Aptian and Cenomanian. Fluctuations from oxidizing to reducing environments of deposition are proposed to account for the variations in properties of the Type II organic matter between the different facies. Dark laminated layers are good but immature potential source rocks: petroleum potential is often higher than 2 kg HC/t of rock.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The basal beds on the Shatsky Rise cored during Leg 6 of the Deep Sea Drilling Project are the oldest sediments recovered to date in the Pacific Ocean. Based on benthonic Foraminifera, the sediments correlate with the lower Barremian to upper Hauterivian (Lower Cretaceous) rather than the Upper Jurassic or Lower Cretaceous as previously reported. Thus the oldest sediments presently known from the Pacific Ocean are considerably younger than those in the western North Atlantic Ocean (Oxfordian; Upper Jurassic).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On Leg 96 of the Deep Sea Drilling Project (DSDP), holes were drilled in Orca and Pigmy basins on the northern Gulf of Mexico continental slope and on the Mississippi Fan. The holes on the fan encountered interbedded sand, silt, and mud deposited extremely rapidly, most during late Wisconsin glacial time. Pore-water chemistry in these holes is variable, but does not follow lithologic changes in any simple way. Both Ca and SO4 are enriched in the pore water of many samples from the fan. Two sites drilled in the prominent central channel of the middle fan show rapid SO4 reduction with depth, whereas two nearby sites in overbank deposits show no sulfate reduction for 300 m. Calcium concentration decreases as SO4 is depleted and Li follows the same pattern. Strontium, which like Li, is enriched in samples enriched in Ca, does not decrease with SO4 and Ca. Potassium in the pore water decreases with depth at almost all sites. Sulfate reduction was active at the two basin sites and, as on the fan, this resulted in calcium carbonate precipitation and a lowering of pore water Ca, Mg, and Li. The Orca Basin site was drilled through a brine pool of 258? salinity. Pore-water salinity decreases smoothly with depth to 50 m and remains well above normal seawater values to the bottom of the hole at about 90 m. This suggests constant sedimentation under anoxic hypersaline conditions for at least the last 50,000 yr.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As part of a continuing program of organic-geochemistry studies of sediments recovered by the Deep Sea Drilling Project, we have analyzed the types, amounts, and thermal-alteration indices of organic matter in samples collected from the landward wall of the Japan Trench on Legs 56 and 57. The samples were canned aboard ship, enabling us to measure also their gas contents. In addition, we analyzed the heavy C15+ hydrocarbons, NSO compounds, and asphaltenes extracted from selected samples. Our samples form a transect down the trench wall, from Holes 438 and 438A (water depth 1558 m), through Holes 435 and 435A (water depth 3401 m), and 440 (water depth 4507 m), to Holes 434 and 434B (water depth 5986 m). The trench wall is the continental slope of Japan. Its sediments are Cenozoic hemipelagic diatomaceous muds that were deposited where they are found or have slumped from farther up the slope. Their terrigenous components probably were deposited from near-bottom nepheloid layers transported by bottom currents or in low density flows (Arthur et al., 1978). Our objective was to find out what types of organic matter exist in the sediment and to estimate their potential for generation of hydrocarbons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During recent years, the basins of the Kara Sea (Kamennomysskaya, Obskaya, and Chugor'yakhinskaya structures) in the Russian Federation have been considered as promising regions for oil and gas exploration and, simultaneously, as possible paths of relatively cheap pipeline and tanker transportation of hydrocarbons projected for recovery. On the other hand, exploration operations, recovery, and transportation of gas pose a considerable risk of accidents and environmental pollution, which causes a justified concern about the future state of the ecological system of the Gulf of Ob and the adjoining parts of the Kara Sea. Therefore, regular combined environmental investigations (monitoring) are the most important factor for estimating the current state and forecasting the dynamics of the development of estuary systems. The program of investigations (schedule, station network, and measured parameters) is standardized in accordance with the international practice of such work and accounts for the experience of monitoring studies of Russian and foreign researchers. Two measurement sessions were performed during ecological investigations in the region of exploration drilling: at the beginning at final stage of drilling operations and borehole testing; in addition, natural parameters were determined in various parts of the Ob estuary before the beginning of investigations. Hydrophysical and hydrochemical characteristics of the water medium were determined and bottom sediments and water were analyzed for various pollutants (petroleum products, heavy metals, and radionuclides). The forms of heavy-metal occurrence in river and sea waters were determined by the method of continuous multistep filtration, which is based on water component fractionation on membrane filters of various pore sizes. These investigations revealed environmental pollution by chemical substances during the initial stage of drilling operations, when remains of fuels, oils, and solutions could be spilled, and part of the chemical pollutants could enter the environment. Owing to horizontal and vertical turbulent diffusion, wave mixing, and the effect of the general direction of currents in the Ob estuary from south to north, areas are formed with elevated concentrations of the analyzed elements and compounds. However, the concentration levels of chemical pollutants are practically no higher than the maximum admissible concentrations, and their substantial dissipation to the average regional background contents can be expected in the near future. Our investigations allowed us to determine in detail the parameters of anthropogenic pollution in the regions affected by hydrocarbon exploration drilling in the Obskii and Kamennomysskii prospects in the Gulf of Ob and estimate their influence on the ecological state of the basin of the Ob River and the Kara Sea on the whole.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sediments from Deep Sea Drilling Project Sites 615, 617, 618, 619, and 620-623 were subjected to pyrolysis. The sediments are immature with respect to petroleum generation as determined by production index values of less than 0.1 and Tmax values of 460-480°C. The amount of pyrolyzable organic matter was moderately low as compared to typical petroleum source rocks. The immature organic matter present does not appear to contain a significant proportion of woody material as shown by the low gas-generating potential. Typical overbank sediments from Sites 617 and 620 generally show higher P2 values (500-800 µg hydrocarbon per g dry weight sediment) than typical channel-fill sediments from Sites 621 and 622 (P2 = 450-560 µg/g). Tmax for both types of sediment remained very constant (462-468 °C) with a slight elevation (+ 15°C) occurring in samples containing lignite. The highest P2 values occurred in sections described as turbidites. Very low P2 values (about 50 µg/g) occurred in sands. P2 values for shallower sections of basin Sites 618 and 619 tended to be higher (900-1000 µg/g) and decreased in deeper, more terrigenous sections of Site 619. Preliminary experiments indicate that microbiological degradation of sediment organic matter causes a decrease in P2. Pyrolyzable organic matter from lower fan Site 623 appears to increase with depth in two different sediment sequences (40-85 and 95-125 m sub-bottom). Organic matter type, as shown by pyrolysis capillary gas chromatography (GC) patterns, was generally the same throughout the well, with much more scatter occurring in the deepest sections (130-155 m sub-bottom). One major and two minor organic matter types could be recognized in both fan and basin sites drilled on Leg 96.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Geochemical characterizations of the Cretaceous formations at Site 603 are quite comparable with those at Site 105. In the Blake-Bahama and the Hatteras formations, the petroleum potential is medium (<5 kg HC/t of rock) to very low (<0.5 kg HC/t of rock), and the organic matter is mainly of type III origin, that is, terrestrial. At the top of the Hatteras Formation, there is a condensed series, which chiefly contains organic matter of type II origin, with up to 20 wt.% total organic carbon content in Core 603B-34 and 25 wt.% in Core 105-9. This accumulation corresponds to the Cenomanian/Turonian boundary event. An examination of dinoflagellates in the kerogen concentration assigns dates to the samples studied by organic geochemistry. The Cenomanian and Turonian age of the organic-matter-rich black claystones indicates a low rate of sedimentation, about 1 m/Ma. Furthermore, the occurrence of type II organic matter indicates an anoxic environment with insufficient oxygen renewal to oxidize the sinking hemipelagic organic matter. This organic enrichment is not related to local phenomena but to sedimentation over an extended area, because deposits are well known in various areas with different paleodepths in the North Atlantic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the extension of Deep Sea Drilling Project (DSDP) Leg 76 a new and previously unpenetrated lithological unit composed mainly of claystones was cored above basalt basement at Site 534 in the Blake-Bahama Basin. The Callovian part of the new unit contains interbedded 'black shales' which were hitherto unexpected in this part of the section. This Paper presents a brief palynological examination of lithofacies-kerogen relationships in these sediments and shows that their organic content is almost entirely a function of the re-deposition of terrestial and marine organic matter versus the ambient redox conditions of the depositional environment. Allochthonous organic matter inputs are highest in the interbedded turbidites and decline progressively toward the pelagic black shales in which marine organic matter is comparatively well preserved. The significance of various kerogen and palynomorph indices are discussed. The study emphasizes the absolute necessity for sedimentologically-aware sampling in all palynological and geochemical work on lithologically heterogeneous sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The source rock potential of Cretaceous organic rich whole rock samples from deep sea drilling project (DSDP) wells offshore southwestern Africa was investigated using bulk and quantitative pyrolysis techniques. The sample material was taken from organic rich intervals of Aptian, Albian and Turonian aged core samples from DSDP site 364 offshore Angola, DSDP well 530A north of the Walvis Ridge offshore Namibia, and DSDP well 361 offshore South Africa. The analytical program included TOC, Rock-Eval, pyrolysis GC, bulk kinetics and micro-scale sealed vessel pyrolysis (MSSV) experiments. The results were used to determine differences in the source rock petroleum type organofacies, petroleum composition, gas/oil ratio (GOR) and pressure-volume-temperature (PVT) behavior of hydrocarbons generated from these black shales for petroleum system modeling purposes. The investigated Aptian and Albian organic rich shales proved to contain excellent quality marine kerogens. The highest source rock potential was identified in sapropelic shales in DSDP well 364, containing very homogeneous Type II and organic sulfur rich Type IIS kerogen. They generate P-N-A low wax oils and low GOR sulfur rich oils, whereas Type III kerogen rich silty sandstones of DSDP well 361 show a potential for gas/condensate generation. Bulk kinetic experiments on these samples indicate that the organic sulfur contents influence kerogen transformation rates, Type IIS kerogen being the least stable. South of the Walvis Ridge, the Turonian contains predominantly a Type III kerogen. North of the Walvis Ridge, the Turonian black shales contain Type II kerogen and have the potential to generate P-N-A low and high wax oils, the latter with a high GOR at high maturity. Our results provide the first compositional kinetic description of Cretaceous organic rich black shales, and demonstrate the excellent source rock potential, especially of the Aptian-aged source rock, that has been recognized in a number of the South Atlantic offshore basins.