25 resultados para P. alata
Resumo:
The Pliocene and Pleistocene periods are known for the onset and consequent amplification of glacial-interglacial cycles. The California margin, situated in the mid-latitudes of the northern Pacific Ocean, is expected to be one of the most interesting regions for Pliocene to Pleistocene paleoceanography because this area occupies a unique position in the ocean-atmosphere system over the region. In this study, we investigated paleoceanographic history, using fossil diatoms, since the Brunhes/Matuyama (B/M) paleomagnetic boundary in which glacial and interglacial periods began to alternate in 100-yr cycles. In Hole 1018A, to a depth corresponding to the beginning of Northern Hemisphere glaciation (late Pliocene), we investigated the responses of the ocean-atmosphere system to stepwise cooling in the California margin. Although the work is still continuing, this data report shows that fossil diatoms of Pliocene and Pleistocene sediments significantly changed both in quality and quantity and implies a possible relationship to global climatic changes.
Resumo:
The "MARECHIARA-phytoplankton" dataset contains phytoplankton data collected in the ongoing time-series at Stn MC ( 40°48.5' N, 14°15' E) in the Gulf of Naples. This dataset spans over the period 1984-2006 and contains data of phytoplankton species composition and abundance. Phytoplankton sampling was regularly conducted from January 1984 till July 1991 and in 1995-2006. Sampling was interrupted from August 1991 till January 1995. The sampling frequency was fortnightly till 1991 and weekly since 1995. Phytoplankton samples were collected at 0.5 m depth using Niskin bottles and immediately fixed with formaldehyde (0.8-1.6% final concentration) for species identification and counts.
Resumo:
The diatom flora from two sediment cores recovered from the upper 27 meters below seafloor (mbsf) in the oceanic frontal area off Sanriku, northeast Japan, during Ocean Drilling Program Leg 186 were analyzed. Diatom abundance seems to be in interglacial stages and suggests a south-north shifting of the frontal area. Diatom temperature values are less reliable because frequency of the warm-water species is smaller. Site 1151 was in a warm climate at ~50 ka, as were Deep Sea Drilling Project Sites 579 and 580 in the western North Pacific Ocean. A mixed diatom assemblage in the upper 3 mbsf at Site 1150 is evidence that the Tsugaru Warm Current flowed into the studied area through the Tsugaru Strait.
Resumo:
Sites 1251 (44°34.213'N, 125°4.440'W; 1211 m water depth) and 1252 (44°35.167'N, 125°5.569'W; 1039 m water depth) were drilled on the eastern flank of the southern summit of Hydrate Ridge off Oregon in the northeast Pacific Ocean, where well-stratified sediments were deposited at a rapid rate. Unconformities and debris flow layers of middle Pleistocene age were found at both sites. Their ages are of great importance in constructing the geohistory of Hydrate Ridge. Detailed diatom biostratigraphy of the middle to late Pleistocene of Sites 1251 and 1252 was carried out for this purpose.
Resumo:
Bouvet (Bouvetøya) is a geologically young and very remote island just south of the Polar Front. Here we report samples taken during the RV "Polarstern" cruise ANTXXI/2 on 3 days in November 2003 and January 2004. This work was part of SCAR's EASIZ programme and intended, by providing data on the marine fauna of this "white gap" in the Atlantic sector of the Southern Ocean, to contribute to identifying the role of Bouvet in the faunal exchange between the Sub- and high Antarctic. While this goal demands extensive molecular analysis of the material sampled (future work), a checklist of the samples and data at hand widens the faunal and environmental inventory substantially. We suggest some preliminary conclusions on the relationship of Bouvet Island's fauna with that of other regions, such as Magellanic South America, the Antarctic Peninsula, and the high Antarctic Weddell Sea, which have been sampled previously. There seem to be different connections for individual higher taxa rather than a generally valid consistent picture.
Resumo:
The Southern Ocean (SO) plays a key role in modulating atmospheric CO2 via physical and biological processes. However, over much of the SO, biological activity is iron-limited. New in situ data from the Antarctic zone south of Africa in a region centered at -20°E - 25°E reveal a previously overlooked region of high primary production, comparable in size to the northwest African upwelling region. Here, sea ice together with enclosed icebergs is channeled by prevailing winds to the eastern boundary of the Weddell Gyre, where a sharp transition to warmer waters causes melting. This cumulative melting provides a steady source of iron, fuelling an intense phytoplankton bloom that is not fully captured by monthly satellite production estimates. These findings imply that future changes in sea-ice cover and dynamics could have a significant effect on carbon sequestration in the SO.
Resumo:
Ancient Lake Ohrid, located in the southern Balkan Peninsula in Macedonia and Albania is characterized by a high degree of endemism and it is considered to be the oldest lake in Europe. But its exact age (between one and ten million years) and also its origin are so far not known. To unravel these uncertainties an ICDP (International Continental Scientific Drilling Program) drilling project (Scientific Collaboration On Past Speciation Conditions in Ohrid (SCOPSCO)), started in April 2013. In addition to the investigations about the age and origin, other paleolimnological studies, e.g., the reconstruction of past climate and of past lake level changes, should be performed with the drilled cores. Used proxies in such paleolimnological studies are, e.g., ostracodes because they respond sensitively to environmental changes but an accurate knowledge of their preferences and tolerances to specific environmental conditions is necessary for this purpose. So far, this knowledge about the, mostly endemic, Ohrid ostracodes was limited. Thus, within the framework of this thesis, ostracodes and a multiplicity of environmental data were collected in Lake Ohrid and its adjacent waters during four field campaigns. In a total of 47 ostracode species could be detected in the entire study area and 32 of them were found alive in Lake Ohrid. Multivariate statistic identified that water depth, salinity, conductivity, pH, and dissolved oxygen were the main determining factors for ostracode distribution in the entire study area. In Lake Ohrid, the distribution was mainly controlled by water depth, water temperature, and pH. Some ostracodes were identified as strong indicator species for important environmental variables, e.g., water temperature and water depth. A distinctive feature of Lake Ohrid was the finding of the ostracode genus Amnicythere whose species normally inhabit oligo-(meso-)haline waters and this could point to a marine origin of the lake. So far, the specialized endemic ostracodes show the highest abundances and the greatest spatial distribution in Lake Ohrid but during the sampling eight widespread species were found for the first time in the lake. They inhabited mainly the northern part of the lake, where two cities are located and industry and agriculture play a major role, and they were limited to water depths above 50 m and this could be an evidence for an increasing anthropogenic pressure because widespread ostracode species often replace endemic species. To unravel the human impact on Lake Ohrid during the last decades short sediment cores were taken and the multi-proxy study indicated that the lake productivity between the early 1920s and the late 1980s was relatively low. Diatom assemblages indicate a rising productivity in the southern part of Lake Ohrid since the mid 1970s and geochemical proxies and ostracodes point to an increasing productivity since the late 1980s in the southern and in the northern part. A slight increase in the productivity continued until 2009. Noticeable is the fact that since the early 1990s, the increasing productivity and the increasing concentrations of heavy metals correspond to a decreasing number of ostracodes in the northern part of Lake Ohrid. Perhaps, this indicates that living conditions in this lake part became less favorable for the mostly endemic ostracode species. Furthermore, the sediment samples from the cores show relatively high concentrations of arsenic, iron, and nickel. Fluctuations in ostracode assemblages from three longer sediment cores, the longest spans approximately 136 ka, taken in Lake Ohrid, correspond to fluctuations in the productivity, in the carbonate content, of the lake level, and of climate changes. Between the marine isotope stage (MIS) 6 and MIS 2 the number of ostracode valves is very low or the valves were completely absent. This corresponds to a low lake productivity, a low carbonate content, and a low lake level. At the onset of the Holocene, the number of valves increased markedly and this correlates with an increased productivity and carbonate content and a warmer climate. But during the Little Ice Age (LIA), the number of valves dropped again and species which prefer warmer waters disappeared completely. This drop corresponds also to a low productivity. After the LIA, the number of species increased again but since 1895 AD a strong and abrupt decrease is visible. A reason for this could be an increase in the heavy metal concentrations.
Resumo:
The distribution of diatoms, coccolithophores and planktic foraminifers mirrored the hydrographic and trophic conditions of the surface ocean (0-100 m) across the upwelling area off the Oman coast to the central Arabian Sea during May/June 1997 and July/August 1995. The number of diatoms was increased in waters with local temperature minimum and enhanced nutrient concentration (nitrate, phosphate, silicate) caused by upwelling. Vegetative cells of Chaetoceros dominated the diatom assemblage in the coastal upwelling area. Towards the more nutrient depleted and stratified surface waters to the southeast, the number of diatoms decreased, coccolithophore and planktic foraminiferal numbers increased, and floral and faunal composition changed. In particular, the transition between the eutrophic upwelling region off Oman and the oligotrophic central Arabian Sea was marked by moderate nutrient concentration, and high coccolithophore and foraminifer numbers. Florisphaera profunda, previously often referred as a 'lower-photic-zone-species', was frequent in water depths as shallow as 20 m, and at high nutrient concentration up to 14 µmol NO3/l and 1.2 µmol PO4/. To the oligotrophic southeast of the divergence, cell densities of coccolithophores declined and Umbellosphaera irregularis prevailed throughout the water column down to 100 m depth. In general, total coccolithophore numbers were limited by nutrient threshold concentration, with low numbers (<10*10**3 cells/l) at high [NO3] and [PO4], and high numbers (>70*10**3 cells/l) at low [NO3] and [PO4]. The components of the complex microplankton succession, diatoms, coccoliths and planktic foraminifers (and possibly others), should ideally be used as a combined paleoceanographic proxy. Consequently, models on plankton ecology should be resolved at least for the seasonality, to account for the bias of paleoceanographic transfer calculations.