20 resultados para Methods: laboratory: molecular
Resumo:
Calcifying echinoid larvae respond to changes in seawater carbonate chemistry with reduced growth and developmental delay. To date, no information exists on how ocean acidification acts on pH homeostasis in echinoderm larvae. Understanding acid-base regulatory capacities is important because intracellular formation and maintenance of the calcium carbonate skeleton is dependent on pH homeostasis. Using H(+)-selective microelectrodes and the pH-sensitive fluorescent dye BCECF, we conducted in vivo measurements of extracellular and intracellular pH (pH(e) and pH(i)) in echinoderm larvae. We exposed pluteus larvae to a range of seawater CO(2) conditions and demonstrated that the extracellular compartment surrounding the calcifying primary mesenchyme cells (PMCs) conforms to the surrounding seawater with respect to pH during exposure to elevated seawater pCO(2). Using FITC dextran conjugates, we demonstrate that sea urchin larvae have a leaky integument. PMCs and spicules are therefore directly exposed to strong changes in pH(e) whenever seawater pH changes. However, measurements of pH(i) demonstrated that PMCs are able to fully compensate an induced intracellular acidosis. This was highly dependent on Na(+) and HCO(3)(-), suggesting a bicarbonate buffer mechanism involving secondary active Na(+)-dependent membrane transport proteins. We suggest that, under ocean acidification, maintained pH(i) enables calcification to proceed despite decreased pH(e). However, this probably causes enhanced costs. Increased costs for calcification or cellular homeostasis can be one of the main factors leading to modifications in energy partitioning, which then impacts growth and, ultimately, results in increased mortality of echinoid larvae during the pelagic life stage.
Resumo:
Euryhaline decapod crustaceans possess an efficient regulation apparatus located in the gill epithelia, providing a high adaptation potential to varying environmental abiotic conditions. Even though many studies focussed on the osmoregulatory capacity of the gills, acid-base regulatory mechanisms have obtained much less attention. In the present study, underlying principles and effects of elevated pCO2 on acid-base regulatory patterns were investigated in the green crab Carcinus maenas acclimated to diluted seawater. In gill perfusion experiments, all investigated gills 4-9 were observed to up-regulate the pH of the hemolymph by 0.1-0.2 units. Anterior gills, especially gill 4, were identified to be most efficient in the equivalent proton excretion rate. Ammonia excretion rates mirrored this pattern among gills, indicating a linkage between both processes. In specimen exposed to elevated pCO2 levels for at least 7 days, mimicking a future ocean scenario as predicted until the year 2300, hemolymph K+ and ammonia concentrations were significantly elevated, and an increased ammonia excretion rate was observed. A detailed quantitative gene expression analysis revealed that upon elevated pCO2 exposure, mRNA levels of transcripts hypothesized to be involved in ammonia and acid-base regulation (Rhesus-like protein, membrane-bound carbonic anhydrase, Na+/K+-ATPase) were affected predominantly in the non-osmoregulating anterior gills.
Resumo:
Dissolved organic matter (DOM) in the oceans constitutes a major carbon pool involved in global biogeochemical cycles. More than 96% of the marine DOM resists microbial degradation for thousands of years. The composition of this refractory DOM (RDOM) exhibits a molecular signature which is ubiquitously detected in the deep oceans. Surprisingly efficient microbial transformation of labile into RDOM was shown experimentally, implying that microorganisms produce far more RDOM than needed to sustain the global pool. By assessing the microbial formation and transformation of DOM in unprecedented molecular detail for 3 years, we show that most of the newly formed RDOM is molecularly different from deep sea RDOM. Only <0.4% of the net community production was channeled into RDOM molecularly undistinguishable from deep sea DOM. Our study provides novel experimentally derived molecular evidence and data for global models on the production, turnover and accumulation of marine DOM.
Resumo:
Ocean acidification is considered a major threat to marine ecosystems and may particularly affect calcifying organisms such as corals, foraminifera and coccolithophores. Here we investigate the impact of elevated pCO2 and lowered pH on growth and calcification in the common calcareous dinoflagellate Thoracosphaera heimii. We observe a substantial reduction in growth rate, calcification and cyst stability of T. heimii under elevated pCO2. Furthermore, transcriptomic analyses reveal CO2 sensitive regulation of many genes, particularly those being associated to inorganic carbon acquisition and calcification. Stable carbon isotope fractionation for organic carbon production increased with increasing pCO2 whereas it decreased for calcification, which suggests interdependence between both processes. We also found a strong effect of pCO2 on the stable oxygen isotopic composition of calcite, in line with earlier observations concerning another T. heimii strain. The observed changes in stable oxygen and carbon isotope composition of T. heimii cysts may provide an ideal tool for reconstructing past seawater carbonate chemistry, and ultimately past pCO2. Although the function of calcification in T. heimii remains unresolved, this trait likely plays an important role in the ecological and evolutionary success of this species. Acting on calcification as well as growth, ocean acidification may therefore impose a great threat for T. heimii.