39 resultados para Massive spin-2
Resumo:
Massive sulfide samples from the Bent Hill area were analyzed for 230Th/234U and 231Pa/235U disequilibria. Apparent ages calculated from these ratios are between 8.2 and >300 ka. Concordant ages were found for only three samples that originate near the surface from the clastic sulfide zone and suggest "true" ages of between 8.5 and 16.0 ka (mean of 230Th and 231Pa ages). The uranium vs. depth distribution in the Bent Hill Massive Sulfide deposit suggests an open system for uranium for the deeper part of the deposit, which was probably caused by extensive recrystallization processes inhibiting true age determinations.
Resumo:
This study tested the hypothesis that the response of corals to temperature and pCO2 is consistent between taxa. Juvenile massive Porites spp. and branches of P. rus from the back reef of Moorea were incubated for 1 month under combinations of temperature (29.3 °C and 25.6 °C) and pCO2 (41.6 Pa and 81.5 Pa) at an irradiance of 599 µmol quanta/m/s. Using microcosms and CO2 gas mixing technology, treatments were created in a partly nested design (tanks) with two between-plot factors (temperature and pCO2), and one within-plot factor (taxon); calcification was used as a dependent variable. pCO2 and temperature independently affected calcification, but the response differed between taxa. Massive Porites spp. was largely unaffected by the treatments, but P. rus grew 50% faster at 29.3 °C compared with 25.6 °C, and 28% slower at 81.5 Pa vs. 41.6 Pa CO2. A compilation of studies placed the present results in a broader context and tested the hypothesis that calcification for individual coral genera is independent of pH, [HCO3]-, and [CO3]2-. Unlike recent reviews, this analysis was restricted to studies reporting calcification in units that could be converted to nmol CaCO3/cm**2/h. The compilation revealed a high degree of variation in calcification as a function of pH, [HCO3]-, and [CO3]2-, and supported three conclusions: (1) studies of the effects of ocean acidification on corals need to pay closer attention to reducing variance in experimental outcomes to achieve stronger synthetic capacity, (2) coral genera respond in dissimilar ways to pH, [HCO3]-, and [CO3]2-, and (3) calcification of massive Porites spp. is relatively resistant to short exposures of increased pCO2, similar to that expected within 100 y.
Resumo:
An additional ore field in the central part of the MARhas been discovered. Together with previously discovered Logachev (14°45'N) and Ashadze (12°58'N) ore fields, the new ore field constitutes a cluster with preliminarily estimated total ore reserve of >10 Mt, which is comparable with large continental massive sulfide deposits.
Resumo:
Drilling durin Deep Sea Drilling Project Legs 68, 69, and 70 on the southern limb of the Costa Rica Rift was used to study geothermal processes in the ocean crust. Two areas were drilled. One was a geothermally hot site on 6.2-m.y.-old crust, where topography is smooth, heat flow is close to that predicted by conductive cooling of the lithosphere (200 mWm**-2), and hydrothermal circulation may be sealed within the crust. The other was on 3.9-m.y.-old crust, where rough topography is associated with low heat flow (15 to 50 mWm**-2) and possible open convection of sea water. At both sites, about 250 m of siliceous-calcareous sediments overlies igneous basement. In the hot area, it blankets the topography, whereas in the cold area, basement outcrops still occur. Operations included numerous down-hole experiments in both areas and hydraulic piston coring of a 230-m sediment section in the hot area. Diagenesis of the sediments appears closely related to temperature. At the hot site, chert was found near basement, and the chemistry of pore fluids, sampled from both sediments and basement, is strongly influenced by reactions within the basement. Strong lateral gradients in the composition of pore fluids occur in the sediments. At the cold site, no chert was found, and bacterial processes within the sediment dominated the chemistry of the pore fluids. Basaltic basement in both areas consists mainly of pillow lavas and thin flows, with occasional more massive units. The basalt is relatively magnesian. The degree of alteration is very small in the cold area, but much more extensive in the hot area. Ease of drilling also shows a strong contrast. Basement penetration reached 562 m in the hot area and was halted because of lack of time; at the cold site, 43 m of basement was cored only with difficulty. The most intensive in-hole experiments were conducted in the hot area. Successful runs with the borehole televiewer allowed basement lithology to be determined and showed the presence of more and less fractured zones. Pulse tests using a single borehole packer gave values of basement permeability of about 2 to 40 millidarcies. Numerous temperature logs established a broadly conductive in situ temperature gradient, with temperatures reaching 120°C at 562 m into the basement. However, anomalously low temperatures in the upper part of the hole, which persisted after drilling disturbance had decayed away, showed that cold ocean water was flowing down the hole and into the basement at about 90 m below the base of the sediments, at rates of about 80 to 100 m/hr. The packer records indicate a pressure at this depth of 10 bars below hydrostatic.
(Table T4) Lead and pyrite sulphur isotopes of massive and semimassive sulfides of ODP Site 193-1189