41 resultados para KNITTED FABRICS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have determined the azimuth of bottom-current flow in drift deposit sediments recovered at ODP Sites 1095 and 1101, Antarctic Peninsula, using paleomagnetic reorientation of anisotropy of magnetic susceptibility (AMS) ellipsoids. A total of 38 cores from the two ODP sites have been measured, providing spatial and directional information on the physical record of the ACC (Antarctic Circumpolar Current) in the Plio-Pleistocene. Declination and inclination of the paleomagnetic vector of each core segment were used to reorient the AMS principal axes to the geographic coordinates. The cores were reoriented using the measured direction of the characteristic remanent magnetization (ChRM) with respect to a common reference line for the core, from which we are able to determine the orientation of the paleocurrent flow for Sites 1095 (Drift 7) and 1101 (Drift 4) relative to the geographic coordinates. Both sites have paleocurrent directions trending ~NW-SE, which in the former locality are parallel to a sediment wave field. Our study shows that a combination of magnetic fabric analysis and paleomagnetism allows deep-sea sedimentary fabric to be used as a long-term proxy of bottom-current flow history.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quartz Crystallographic Preferred Orientation (CPO) patterns are most commonly a result of deformation by dislocation creep. We investigated whether Dissolution-Precipitation Creep (DPC) a process that occur at lower differential stresses and temperatures, may result in CPO in quartz. Within the Purgatory Conglomerate, DPC led to quartz dissolution along cobble surfaces perpendicular to the shortening direction, and quartz precipitation in overgrowths at the ends of the cobbles (strain shadows), parallel to the maximum extension direction. The Purgatory Conglomerate is part of the SE Narragansett basin where strain intensity increases from west to east and is associated with top-to-the-west transport and folding during the Alleghanian orogeny. Quartz c-axis orientations as revealed by Electron Backscatter Diffraction (EBSD) methods, were random in all analyzed domains within the cobbles and strain shadows irrespective of the intensity of strain or metamorphic grade of the sample. Quartz dissolution probably occurred exclusively along the cobbles' margins, leaving the remaining grains unaffected by DPC. The fact that quartz precipitated in random orientations may indicate that the strain shadows were regions of little or no differential stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A rock salt-lamprophyre dyke contact zone (sub-vertical, NE-SW strike) was investigated for its petrographic, mechanic and physical properties by means of anisotropy of magnetic susceptibility (AMS) and rock magnetic properties, coupled with quantitative microstructural analysis and thermal mathematical modelling. The quantitative microstructural analysis of halite texture and solid inclusions revealed good spatial correlation with AMS and halite fabrics. The fabrics of both lamprophyre and rock salt record the magmatic intrusion, "plastic" flow and regional deformation (characterized by a NW-SE trending steep foliation). AMS and microstructural analysis revealed two deformation fabrics in the rock salt: (1) the deformation fabrics in rock salt on the NW side of the dyke are associated with high temperature and high fluid activity attributed to the dyke emplacement; (2) On the opposite side of the dyke, the emplacement-related fabric is reworked by localized tectonic deformation. The paleomagnetic results suggest significant rotation of the whole dyke, probably during the diapir ascent and/or the regional Tertiary to Quaternary deformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At Site 1117, drilled during Leg 180 of the Ocean Drilling Program in the Woodlark Basin, we cored a fault zone and recovered fault gouge, mylonitized and brecciated gabbros, and undeformed gabbro. We measured the anisotropy of magnetic susceptibility for the rock samples. The susceptibilities of the fault gouge samples were lower than those of the undeformed gabbro, and those of deformed gabbros were lowest. The anisotropy degrees of the fault gouge samples were higher than those of the deformed and undeformed gabbros. Oblate magnetic fabrics were dominant in the samples from the fault zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chinese scientists will start to drill a deep ice core at Kunlun station near Dome A in the near future. Recent work has predicted that Dome A is a location where ice older than 1 million years can be found. We model flow, temperature and the age of the ice by applying a three-dimensional, thermomechanically coupled full-Stokes model to a 70 × 70 km**2 domain around Kunlun station, using isotropic non-linear rheology and different prescribed anisotropic ice fabrics that vary the evolution from isotropic to single maximum at 1/3 or 2/3 depths. The variation in fabric is about as important as the uncertainties in geothermal heat flux in determining the vertical advection which in consequence controls both the basal temperature and the age profile. We find strongly variable basal ages across the domain since the ice varies greatly in thickness, and any basal melting effectively removes very old ice in the deepest parts of the subglacial valleys. Comparison with dated radar isochrones in the upper one third of the ice sheet cannot sufficiently constrain the age of the deeper ice, with uncertainties as large as 500 000 years in the basal age. We also assess basal age and thermal state sensitivities to geothermal heat flux and surface conditions. Despite expectations of modest changes in surface height over a glacial cycle at Dome A, even small variations in the evolution of surface conditions cause large variation in basal conditions, which is consistent with basal accretion features seen in radar surveys.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laboratory compressional wave (Vp) and shear wave (Vs) velocities were measured as a function of confining pressure for the gabbros from Hole 735B and compared to results from Leg 118. The upper 500 m of the hole has a Vp mean value of 6895 m/s measured at 200 MPa, and at 500 meters below seafloor (mbsf), Vp measurements show a mean value of 7036 m/s. Vs mean values in the same intervals are 3840 m/s and 3857 m/s, respectively. The mean Vp and Vs values obtained from log data in the upper 600 m are 6520 and 3518 m/s, respectively. These results show a general increase in velocity with depth and the velocity gradients estimate an upper mantle depth of 3.32 km. This value agrees with previous work based on dredged samples and inversion of rare element concentrations in basalts dredged from the conjugate site to the north of the Atlantis Bank. Laboratory measurements show Vp anisotropy ranging between 0.4% and 8.8%, with the majority of the samples having values less than 3.8%. Measurements of velocity anisotropy seem to be associated with zones of high crystal-plastic deformation with predominant preferred mineral orientations of plagioclase, amphiboles, and pyroxenes. These findings are consistent with results on gabbros from the Hess Deep area and suggest that plastic deformation may play an important role in the seismic properties of the lower oceanic crust. In contrast to ophiolite studies, many of the olivine gabbros show a small degree of anisotropy. Log derived Vs anisotropy shows an average of 5.8% for the upper 600 m of Hole 735B and tends to decrease with depth where the overburden pressure and the age of the crustal section suggests closure of cracks and infilling of fractures by alteration minerals. Overall the results indicate that the average shear wave splitting in Hole 735B might be influenced by preferred structural orientations and the average value of shear wave splitting may not be a maximum because structural dips are <90°. The maximum fast-wave orientation values could be influenced by structural features striking slightly oblique to this orientation or by near-field stress concentrations. However, flexural wave dispersion analyses have not been performed to confirm this hypothesis or to indicate to what extent the near-field stresses may be influencing shear wave propagation. Acoustic impedance contrasts calculated from laboratory and logging data were used to generate synthetic seismograms that aid in the interpretation of reflection profiles. Several prominent reflections produced by these calculations suggest that Fe-Ti oxides and shear zones may contribute to the reflective nature of the lower oceanic crust. Laboratory velocity attenuation (Q) measurements from below 500 m have a mean value of 35.1, which is consistent with previous vertical seismic profile (VSP) and laboratory measurements on the upper 500 m.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anisotropy of magnetic susceptibility documents the generation of tectonically produced fabrics in sediments that macroscopically show no evidence of this disruption. The fabric observed in initial accretion is largely produced by overprinting of the original sedimentary susceptibility anisotropy by an E-W horizontal tectonic shortening and vertical extension. The response of the sediments to stress during initial accretion is variable, particularly near the sediment surface, and appears to reflect the inhomogeneous distribution of strain rate in the overthrust sequence. The susceptibility anisotropy of sediments possessing scaly fabric is consistent with the strong orientation of Phyllosilicates seen in thin section, producing a Kmin normal to the scalyness. The slope sediments deposited on the accreted sequence are also affected by tectonic shortening. The accreted sequences at Sites 673 and 674 show a complex history of fabric modification, with previous tectonic fabrics overprinted by later fabric modifications, pointing to continued tectonic shortening during the accretion process. The form of the susceptibility anisotropy axes at Sites 673 and 674 is consistent with NESW shortening, probably reflected in the NW-SE surface expression of the out-of-sequence thrusts. The susceptibility anisotropy appears to document a downhole change in the trend of shortening from E to W at the surface to more NESW at depth, probably as a result of the obliquely trending basement ridge, the Tiburon Rise.

Relevância:

10.00% 10.00%

Publicador: