156 resultados para IRON(III) HYDROXIDE PARTICLES
Resumo:
Geological, mineralogical and microbiological aspects of the methane cycle in water and sediments of different areas in the oceans are under consideration in the monograph. Original and published estimations of formation- and oxidation rates of methane with use of radioisotope and isotopic methods are given. The role of aerobic and anaerobic microbial oxidation of methane in production of organic matter and in formation of authigenic carbonates is considered. Particular attention is paid to processes of methane transformation in areas of its intensive input to the water column from deep-sea hydrothermal sources, mud volcanoes, and cold methane seeps.
Resumo:
Two Pacific Ocean manganese nodules, one from the ocean basin and one from a sea-mount, were examined in transmission electron microscopes at 100 and 650 kV. Of the many specimens examined, ten electron diffraction crystal spot patterns were identified. Sodium birnessite was observed six times and todorokite, Giavanoli's synthetic birnessite, hydrohausmanite and -Fe2O3 one time each. Ferric hydroxide was synthesized in the laboratory and shown to be the same as the primary iron mineral observed in the manganese nodules. The ferric hydroxide had a particle size range from 30 to 450 ?. Manganese oxide particles were frequently embedded in a mass of smaller ferric hydroxide particles.
Resumo:
The redox stratification of bottom sediments in Kandalaksha Bay, White Sea, is characterized by elevated concentrations of Mn (3-5%) and Fe (7.5%) in the uppermost layer, which is two orders of magnitude and one and a half times, respectively, higher than the average concentrations of these elements in the Earth's crust. The high concentrations of organic matter (Corg = 1-2%) in these sediments cannot maintain (because of its low reaction activity) the sulfate-reducing process (the concentration of sulfide Fe is no higher than 0.6%). The clearest manifestation of diagenesis is the extremely high Mn2+ concentration in the silt water (>500 µM), which causes its flux into the bottom water, oxidation in contact with oxygen, and the synthesis of MnO2 oxy-hydroxide enriching the surface layer of the sediments. Such migrations are much less typical of Fe. Upon oxygen exhaustion in the uppermost layer of the sediments, the synthesized oxyhydroxides (MnO2 and FeOOH) serve as oxidizers of organic matter during anaerobic diagenesis. The calculated diffusion-driven Mn flux from the sediments (280 µM/m**2 day) and corresponding amount of forming Mn oxyhydrate as compared to opposite oxygen flux to sediments (1-10 mM/m**2 day) indicates that >10% organic matter in the surface layer of the sediments can be oxidized with the participation of MnO2. The roles of other oxidizers of organic matter (FeOOH and SO4**2-) becomes discernible at deeper levels of the sediments. The detailed calculation of the balance of reducing processes testifies to the higher consumption of organic matter during the diagenesis of surface sediments than it follows from the direct determination of Corg. The most active diagenetic redox processes terminate at depths of 25-50 cm. Layers enriched in Mn at deeper levels are metastable relicts of its surface accumulation and are prone to gradual dissemination.
Resumo:
Redox-sensitive trace metals (Mn, Fe, U, Mo, Re), nutrients and terminal metabolic products (NO3-, NH4+, PO43-, total alkalinity) were for the first time investigated in pore waters of Antarctic coastal sediments. The results of this study reveal a high spatial variability in redox conditions in surface sediments from Potter Cove, King George Island, western Antarctic Peninsula. Particularly in the shallower areas of the bay the significant correlation between sulphate depletion and total alkalinity, the inorganic product of terminal metabolism, indicates sulphate reduction to be the major pathway of organic matter mineralisation. In contrast, dissimilatory metal oxide reduction seems to be prevailing in the newly ice-free areas and the deeper troughs, where concentrations of dissolved iron of up to 700 µM were found. We suggest that the increased accumulation of fine-grained material with high amounts of reducible metal oxides in combination with the reduced availability of metabolisable organic matter and enhanced physical and biological disturbance by bottom water currents, ice scouring and burrowing organisms favours metal oxide reduction over sulphate reduction in these areas. Based on modelled iron fluxes we calculate the contribution of the Antarctic shelf to the pool of potentially bioavailable iron (Feb) to be 6.9x10**3 to 790x10**3 t/yr. Consequently, these shelf sediments would provide an Feb flux of 0.35-39.5/mg/m**2/yr (median: 3.8 mg/m**2/yr) to the Southern Ocean. This contribution is in the same order of magnitude as the flux provided by icebergs and significantly higher than the input by aeolian dust. For this reason suboxic shelf sediments form a key source of iron for the high nutrient-low chlorophyll (HNLC) areas of the Southern Ocean. This source may become even more important in the future due to rising temperatures at the WAP accompanied by enhanced glacier retreat and the accumulation of melt water derived iron-rich material on the shelf.
Resumo:
The book presents results of comprehensive geological investigations carried out during Cruise 8 of R/V "Vityaz-2" to the western part of the Black Sea in 1984. Systematic studies in the Black Sea during about hundred years have not weakened interest in the sea. Lithological and geochemical studies of sediments in estuarine areas of the Danube and the Kyzyl-Irmak rivers, as well as in adjacent parts of the deep sea and some other areas were the main aims of the cruise. Data on morphological structures of river fans, lithologic and chemical compositions of sediments in the fans and their areal distribution, forms of occurrence of chemical elements, role of organic matter and gases in sedimentation and diagenesis are given and discussed in the book.
Resumo:
Pore water and solid phase from surface sediments of the continental slope off Uruguay and from the Argentine Basin (southwestern Atlantic) were investigated geochemically to ascribe characteristic early diagenetic reactions of iron and manganese. Solid-phase iron speciation was determined by extractions as well as by Mössbauer spectroscopy. Both methods showed good agreement (<6% deviation) for total-Fe speciation. The proportion of easy reducible iron oxyhydroxide relative to total-Fe oxides decreased from the continental slope to the deep sea which is attributed to an increase in crystallinity during transport as well as to a general decrease of iron mobilization. The product of iron reoxidation is Fe oxyhydroxide which made up less than 5% of total Fe. In addition to this fraction, a proportion of smectite bound iron was found to be redox reactive. This fraction made up to 10% of total Fe in sediments of the Argentine Basin and was quantitatively extracted by 1 N HCl. The redox reactive Fe(+II) fraction of smectite was almost completely reoxidized within 24 h under air atmosphere and may therefore considerably contribute to iron redox cycling if bioturbation occurs. In the case of the slope sediments we found concurrent iron and manganese release to pore water. It is not clear whether this is caused by dissimilatory iron and manganese reduction at the same depth or dissimilatory iron reduction alone inducing Mn(+IV) reduction by (abiotic) reaction with released Fe2+. The Argentine Basin sediment showed a significant manganese solid-phase enrichment above the denitrification depth despite the absence of a distinct pore-water gradient of Mn. This implies a recent termination of manganese mobilization and thus a non-steady-state situation with respect to sedimentation or to organic carbon burial rate.
Resumo:
Original geological, geophysical, lithological, mineralogical data on uplifts of the Central Atlantic are given in the book based on materials of Cruise 1 of the R/V Akademik Nikolaj Strakhov. Geological and geophysical studies include description of the obtained material and analysis of structural and morphological elements of the ocean floor. Results of lithological, petrochemical and geochemical studies were extremely innovative and develop a conceptual model. The latter include studies of petrochemical evolution of tholeiitic alkaline plate volcanism, large-scale hydrothermal transformation of basement rocks - palygorskitization, phosphatization and ferromanganese mineralization. Showing imposition Superposition of hydrogenic alteration on hydrothermally altered rocks and its role in Cenozoic history of sedimentation is shown.
Resumo:
Aqueous dihydrogen (H2,aq) is produced in copious amounts when seawater interacts with peridotite and H2O oxidizes ferrous iron in olivine to ferric iron in secondary magnetite and serpentine. Poorly understood in this process is the partitioning of iron and its oxidation state in serpentine, although both impose an important control on dihydrogen production. We present results of detailed petrographic, mineral chemical, magnetic and Mößbauer analyses of partially to fully serpentinized peridotites from the Ocean Drilling Program (ODP) Leg 209, Mid-Atlantic Ridge (MAR) 15°N area. These results are used to constrain the fate of iron during serpentinization and are compared with phase equilibria considerations and peridotite-seawater reaction path models. In samples from Hole 1274A, mesh-rims reveal a distinct in-to-out zoning from brucite at the interface with primary olivine, followed by a zone of serpentine + brucite ± magnetite and finally serpentine + magnetite in the outermost mesh-rim. The compositions of coexisting serpentine (Mg# 95) and brucite (Mg# 80) vary little throughout the core. About 30-50% of the iron in serpentine/brucite mesh-rims is trivalent, irrespective of subbasement depth and protolith (harzburgite versus dunite). Model calculations suggest that both partitioning and oxidation state of iron are very sensitive to temperature and water-to-rock ratio during serpentinization. At temperatures above 330 °C the dissolution of olivine and coeval formation of serpentine, magnetite and dihydrogen depends on the availability of an external silica source. At these temperatures the extent of olivine serpentinization is insufficient to produce much hydrogen, hence conditions are not reducing enough to form awaruite. At T < 330 °C, hydrogen generation is facilitated by the formation of brucite, as dissolution of olivine to form serpentine, magnetite and brucite requires no addition of silica. The model calculations suggest that the iron distribution observed in serpentine and brucite is consistent with formation temperatures ranging from <150 to 250 °C and bulk water-to-rock ratios between 0.1 and 5. These conditions coincide with peak hydrogen fugacities during serpentinization and are conducive to awaruite formation during main stage serpentinization. The development of the common brucite rims around olivine is either due to an arrested reaction olivine -> brucite -> serpentine + brucite, or reflects metastable olivine-brucite equilibria developing in the strong gradient in silica activity between orthopyroxene (talc-serpentine) and olivine (serpentine-brucite).