47 resultados para Growth cabinets and rooms
Resumo:
This study investigated the impact of photon flux and elevated CO2 concentrations on growth and photosynthetic electron transport on the marine diatom Chaetoceros muelleri and looked for evidence for the presence of a CO2-concentrating mechanism (CCM). pH drift experiments clearly showed that C. muelleri has the capacity to use bicarbonate to acquire inorganic carbon through one or multiple CCMs. The final pH achieved in unbuffered cultures was not changed by light intensity, even under very low photon flux, implying a low energy demand of bicarbonate use via a CCM. In short-term pH drift experiments, only treatment with the carbonic anhydrase inhibitor ethoxyzolamide (EZ) slowed down the rise in pH considerably. EZ was also the only inhibitor that altered the final pH attained, although marginally. In growth experiments, CO2 availability was manipulated by changing the pH in closed flasks at a fixed dissolved inorganic carbon (DIC) concentration. Low-light-treated samples showed lower growth rates in elevated CO2conditions. No CO2 effect was recorded under high light exposure. The maximal photosynthetic capacity, however, increased with CO2 concentration in saturating, but not in subsaturating, light intensities. Growth and photosynthetic capacity therefore responded in opposite ways to increasing CO2 availability. The capacity to photoacclimate to high and low photon flux appeared not to be affected by CO2treatments. However, photoacclimation was restricted to growth photon fluxes between 30 and 300 µmol photons m-2 s-1. The light saturation points for photosynthetic electron transport and for growth coincided at 100 µmol photons m-2 s-1. Below 100 µmol photons m-2 s-1 the light saturation point for photosynthesis was higher than the growth photon flux (i.e. photosynthesis was not light saturated under growth conditions), whereas at higher growth photon flux, photosynthesis was saturated below growth light levels.
Resumo:
We observed significant changes in the elemental and intact polar lipid (IPL) composition of the archaeon Thermococcus kodakarensis (KOD1) in response to growth stage and phosphorus supply. Reducing the amount of organic supplements and phosphate in growth media resulted in significant decreases in cell size and cellular quotas of carbon (C), nitrogen (N), and phosphorus (P), which coincided with significant increases in cellular IPL quota and IPLs comprising multiple P atoms and hexose moieties. Relatively more cellular P was stored as IPLs in P-limited cells (2-8%) compared to control cells (<0.8%). We also identified a specific IPL biomarker containing a phosphatidyl-N-acetylhexoseamine headgroup that was relatively enriched during rapid cell division. These observations serve as empirical evidence of IPL adaptations in Archaea that will help to interpret the distribution of these biomarkers in natural systems. The reported cell quotas of C, N, and P represent the first such data for a specific archaeon and suggest that thermophiles are C-rich compared to the cell carbon-to-volume relationship reported for planktonic bacteria.
Resumo:
Increasing atmospheric CO2 concentrations are expected to impact pelagic ecosystem functioning in the near future by driving ocean warming and acidification. While numerous studies have investigated impacts of rising temperature and seawater acidification on planktonic organisms separately, little is presently known on their combined effects. To test for possible synergistic effects we exposed two coccolithophore species, Emiliania huxleyi and Gephyrocapsa oceanica, to a CO2 gradient ranging from ~0.5-250 µmol/kg (i.e. ~20-6000 µatm pCO2) at three different temperatures (i.e. 10, 15, 20°C for E. huxleyi and 15, 20, 25°C for G. oceanica). Both species showed CO2-dependent optimum-curve responses for growth, photosynthesis and calcification rates at all temperatures. Increased temperature generally enhanced growth and production rates and modified sensitivities of metabolic processes to increasing CO2. CO2 optimum concentrations for growth, calcification, and organic carbon fixation rates were only marginally influenced from low to intermediate temperatures. However, there was a clear optimum shift towards higher CO2 concentrations from intermediate to high temperatures in both species. Our results demonstrate that the CO2 concentration where optimum growth, calcification and carbon fixation rates occur is modulated by temperature. Thus, the response of a coccolithophore strain to ocean acidification at a given temperature can be negative, neutral or positive depending on that strain's temperature optimum. This emphasizes that the cellular responses of coccolithophores to ocean acidification can only be judged accurately when interpreted in the proper eco-physiological context of a given strain or species. Addressing the synergistic effects of changing carbonate chemistry and temperature is an essential step when assessing the success of coccolithophores in the future ocean.
Resumo:
The isotopic fractionation of hydrogen during the biosynthesis of alkenones produced by marine haptophyte algae has been shown to depend on salinity and, as such, the hydrogen isotopic composition of alkenones is emerging as a palaeosalinity proxy. The relationship between fractionation and salinity has previously only been determined during exponential growth, whilst it is not yet known in which growth phases natural haptophyte populations predominantly exist. We have therefore determined the relationship between the fractionation factor, alpha alkenones-water, and salinity for C37 alkenones produced in different growth phases of batch cultures of the major alkenone-producing coastal haptophytes Isochrysis galbana (strain CCMP 1323) and Chrysotila lamellosa (strain CCMP 1307) over a range in salinity from ca. 10 to ca. 35. alpha alkenones-water was similar in both species, ranging over 0.841-0.900 for I. galbana and 0.838-0.865 for C. lamellosa. A strong (0.85 <= R**2 <= 0.97; p < 0.0001) relationship between salinity and fractionation factor was observed in both species at all growth phases investigated. This suggests that alkenone dD has the potential to be used as a salinity proxy in coastal areas where haptophyte communities are dominated by these coastal species. However, there was a marked difference in the sensitivity of alpha alkenones-water to salinity between different growth phases: in the exponential growth phase of I. galbana, alpha alkenones-water increased by 0.0019 per salinity unit (S 1), but was less sensitive at 0.0010 S 1 and 0.0008 S 1 during the stationary and decline phases, respectively. Similarly, in C. lamellosa alpha alkenones-water increased by 0.0010 S 1 in the early stationary phase and by 0.0008 S 1 during the late stationary phase. Assuming the shift in sensitivity of alpha alkenones-water to salinity observed at the end of exponential growth in I. galbana is similar in other alkenone-producing species, the predominant growth phase of natural populations of haptophytes will affect the sensitivity of the alkenone salinity proxy. The proxy is likely to be most sensitive to salinity when alkenones are produced in a state similar to exponential growth.
Resumo:
The coccolithophore Emiliania huxleyi was cultured under a broad range of carbonate chemistry conditions to distinguish the effects of individual carbonate system parameters on growth, primary production, and calcification. In the first experiment, alkalinity was kept constant and the fugacity of CO2(fCO2) varied from 2 to 600 Pa (1Pa ~ 10 µatm). In the second experiment, pH was kept constant (pHfree = 8) with fCO2 varying from 4 to 370 Pa. Results of the constant-alkalinity approach revealed physiological optima for growth, calcification, and organic carbon production at fCO2 values of ~20Pa, ~40 Pa, and ~80 Pa, respectively. Comparing this with the constant-pH approach showed that growth and organic carbon production increased similarly from low to intermediate CO2 levels but started to diverge towards higher CO2 levels. In the high CO2 range, growth rates and organic carbon production decreased steadily with declining pH at constant alkalinity while remaining consistently higher at constant pH. This suggests that growth and organic carbon production rates are directly related to CO2 at low (sub-saturating) concentrations, whereas towards higher CO2 levels they are adversely affected by the associated decrease in pH. A pH dependence at high fCO2 is also indicated for calcification rates, while the key carbonate system parameter determining calcification at low fCO2 remains unclear. These results imply that key metabolic processes in coccolithophores have their optima at different carbonate chemistry conditions and are influenced by different parameters of the carbonate system at both sides of the optimum.
Resumo:
Annual precipitation for the last 2,500 years was reconstructed for northeastern Qinghai from living and archaeological juniper trees. A dominant feature of the precipitation of this area is a high degree of variability in mean rainfall at annual, decadal, and centennial scales, with many wet and dry periods that are corroborated by other paleoclimatic indicators. Reconstructed values of annual precipitation vary mostly from 100 to 300 mm and thus are no different from the modern instrumental record in Dulan. However, relatively dry years with below-average precipitation occurred more frequently in the past than in the present. Periods of relatively dry years occurred during 74-25 BC, AD 51-375, 426-500, 526-575, 626-700, 1100-1225, 1251-1325, 1451-1525, 1651-1750 and 1801-1825. Periods with a relatively wet climate occurred during AD 376-425, 576-625, 951-1050, 1351-1375, 1551-1600 and the present. This variability is probably related to latitudinal positions of winter frontal storms. Another key feature of precipitation in this area is an apparently direct relationship between interannual variability in rainfall with temperature, whereby increased warming in the future might lead to increased flooding and droughts. Such increased climatic variability might then impact human societies of the area, much as the climate has done for the past 2,500 years.
Resumo:
The coccolithophore Calcidiscus leptoporus was grown in batch culture under nitrogen (N) as well as phosphorus (P) limitation. Growth rate, particulate inorganic carbon (PIC), particulate organic carbon (POC), particulate organic nitrogen (PON), and particulate organic phosphorus (POP) production were determined and coccolith morphology was analysed. While PON production decreased by 70% under N-limitation and POP production decreased by 65% under P-limitation, growth rate decreased by 33% under N- as well as P-limitation. POC as well as PIC production (calcification rate) increased by 27% relative to the control under P-limitation, and did not change under N-limitation. Coccolith morphology did not change in response to either P or N limitation. While these findings, supported by a literature survey, suggest that coccolith morphogenesis is not hampered by either P or N limitation, calcification rate might be. The latter conclusion is in apparent contradiction to our data. We discuss the reasons for this inference.
Resumo:
The coccolithophore Calcidiscus leptoporus (strain RCC1135) was grown in dilute batch culture at CO2 levels ranging from ~200 to ~1600 µatm. Increasing CO2 concentration led to an increased percentage of malformed coccoliths and eventually (at ~1500 µatm CO2) to aggregation of cells. Carbonate chemistry of natural seawater was manipulated in three ways: first, addition of acid; second, addition of a HCO3/CO3 solution; and third, addition of both acid and HCO3/CO3 solution. The data set allowed the disentangling of putative effects of the different parameters of the carbonate system. It is concluded that CO2 is the parameter of the carbonate system which causes both aberrant coccolithogenesis and aggregation of cells.
Resumo:
As a consequence of anthropogenic CO2 emissions, oceans are becoming more acidic, a phenomenon known as ocean acidification. Many marine species predicted to be sensitive to this stressor are photosymbiotic, including corals and foraminifera. However, the direct impact of ocean acidification on the relationship between the photosynthetic and nonphotosynthetic organism remains unclear and is complicated by other physiological processes known to be sensitive to ocean acidification (e.g. calcification and feeding). We have studied the impact of extreme pH decrease/pCO2 increase on the complete life cycle of the photosymbiotic, non-calcifying and pure autotrophic acoel worm, Symsagittifera roscoffensis. Our results show that this species is resistant to high pCO2 with no negative or even positive effects on fitness (survival, growth, fertility) and/or photosymbiotic relationship till pCO2 up to 54 K µatm. Some sub-lethal bleaching is only observed at pCO2 up to 270 K µatm when seawater is saturated by CO2. This indicates that photosymbiosis can be resistant to high pCO2. If such a finding would be confirmed in other photosymbiotic species, we could then hypothesize that negative impact of high pCO2 observed on other photosymbiotic species such as corals and foraminifera could occur through indirect impacts at other levels (calcification, feeding).
Resumo:
The impact of ocean acidification and increased water temperature on marine ecosystems, in particular those involving calcifying organisms, has been gradually recognised. We examined the individual and combined effects of increased pCO2 (180 ppmV CO2, 380 ppmV CO2 and 750 ppmV CO2 corresponding to past, present and future CO2 conditions, respectively) and temperature (13 °C and 18 °C) during the exponential growth phase of the coccolithophore E. huxleyi using batch culture experiments. We showed that cellular production rate of Particulate Organic Carbon (POC) increased from the present to the future CO2 treatments at 13 °C. A significant effect of pCO2 and of temperature on calcification was found, manifesting itself in a lower cellular production rate of Particulate Inorganic Carbon (PIC) as well as a lower PIC:POC ratio at future CO2 levels and at 18 °C. Coccosphere-sized particles showed a size reduction with both increasing temperature and CO2concentration. The influence of the different treatments on coccolith morphology was studied by categorizing SEM coccolith micrographs. The number of well-formed coccoliths decreased with increasing pCO2 while temperature did not have a significant impact on coccolith morphology. No interacting effects of pCO2 and temperature were observed on calcite production, coccolith morphology or on coccosphere size. Finally, our results suggest that ocean acidification might have a larger adverse impact on coccolithophorid calcification than surface water warming.
Resumo:
The rate of accumulation of a ferromanganese coating on a fragment of pillow basalt was estimated using a variety of techniques. Unsupported 230 Th activity decrease in the oxide layer, K/A dating of the basalt, fission tracks dating of the glassy layer around the basalt, thickness of the palagonitization rind, and integrated 230 Th activity give ages from approximately 3 x 10-6 years to 5 x 10-3 years. Data suggest that the ferromanganese material formed rapidly (33 mm/10-6 years) and by hydrothermal or volcanic processes.