76 resultados para Gas manufacture and works
Resumo:
During the Integrated Ocean Drilling Program (IODP) Expedition 307 for the first time a cold-water coral carbonate mound was drilled down through its base into the underlying sediments. In the current study, sample material from within and below Challenger Mound, located in the Belgica carbonate mound province in the Porcupine Basin offshore Ireland, was investigated for its distribution of microbial communities and gas composition using biogeochemical and geochemical approaches to elucidate the question on the initiation of carbonate mounds. Past and living microbial populations are lower in the mound section compared to the underlying sediments or sediments of an upslope reference site. A reason for this might be a reduced substrate feedstock, reflected by low total organic carbon (TOC) contents, in the once coral dominated mound sequence. In contrast, in the reference site a lithostratigraphic sequence with comparatively high TOC contents shows higher abundances of both past and present microbial communities, indicating favourable living conditions from time of sedimentation until today. Composition and isotopic values of gases below the mound base seem to point to a mixed gas of biogenic and thermogenic origin with a higher proportion of biogenic gas. Oil-derived hydrocarbons were not detected at the mound site. This suggests that at least in the investigated part of the mound base the upward flow of fossil hydrocarbons, being one hypothesis for the initiation of the formation of carbonate mounds, seems to be only of minor significance.
Resumo:
A suite of gas samples obtained from gas pockets and sediments of the Nankai accretionary prism (Site 808) has been analyzed for their gas composition and carbon and hydrogen isotope ratios. Gases collected from gas pockets between 10 and 555 mbsf consist of CH4 and CO2. Stable carbon isotope ratios of these two components point to a bacterial formation of methane via CO2-reduction that is also supported by D/H ratios of methane. Methane desorbed from sediments by a vacuum/acid treatment is of bacterial and thermal origin. Mixing between these gas types is indicated by molecular composition and carbon isotope ratios. Diagenetic processes at low temperatures can explain ethane to pentane concentrations from 0 to 850 mbsf. Between 850 mbsf and the basaltic basement hydrocarbon occurrences are related to catagenetic processes at elevated temperatures. Thermal alteration of organic matter is reflected through different gas parameters. Propane carbon isotope values of a sample from the zone of the frontal thrust indicate that the gas likely migrated from sediments of a higher maturity into the immature sediments at 366 mbsf.
Resumo:
The data files give the basic field and laboratory data on five ponds in the northeast Siberian Arctic tundra on Samoylov. The files contain water and soil temperature data of the ponds, methane fluxes, measured with closed chambers in the centres without vascular plants and the margins with vascular plants, the contribution of plant mediated fluxes on total methane fluxes, the gas concentrations (methane and dissolved inorganic carbon, oxygen) in the soil and the water column of the ponds, microbial activities (methane production, methane oxidation, aerobic and anaerobic carbon dioxide production), total carbon pools in the different horizons of the bottom soils, soil bulk density, soil substance density, and soil porosity.
Resumo:
A pressurized core with CH4 hydrate or dissolved CH4 should evolve gas volumes in a predictable manner as pressure is released over time at isothermal conditions. Incremental gas volumes were collected as pressure was released over time from 29 pressure core sampler (PCS) cores from Sites 994, 995, 996, and 997 on the Blake Ridge. Most of these cores were kept at or near 0ºC with an ice bath, and many of these cores yielded substantial quantities of CH4. Volume-pressure plots were constructed for 20 of these cores. Only five plots conform to expected volume and pressure changes for sediment cores with CH4 hydrate under initial pressure and temperature conditions. However, other evidence suggests that sediment in these five and at least five other PCS cores contained CH4 hydrate before core recovery and gas release. Detection of CH4 hydrate in a pressurized sediment core through volume-pressure relationships is complicated by two factors. First, significant quantities of CH4-poor borehole water fill the PCS and come into contact with the core. This leads to dilution of CH4 concentration in interstitial water and, in many cases, decomposition of CH4 hydrate before a degassing experiment begins. Second, degassing experiments were conducted after the PCS had equilibrated in an ice-water bath (0ºC). This temperature is significantly lower than in situ values in the sediment formation before core recovery. Our results and interpretations for PCS cores collected on Leg 164 imply that pressurized containers formerly used by the Deep Sea Drilling Project (DSDP) and currently used by ODP are not appropriately designed for direct detection of gas hydrate in sediment at in situ conditions through volume-pressure relationships.
Resumo:
The sediment temperature distribution at mud volcanoes provides insights into their activity and into the occurrence of gas hydrates. If ambient pressure and temperature conditions are close to the limits of the gas hydrate stability field, the sediment temperature distribution not only limits the occurrence of gas hydrates, but is itself influenced by heat production and consumption related to the formation and dissociation of gas hydrates. Located in the Sorokin Trough in the northern Black Sea, the Dvurechenskii mud volcano (DMV) was in the focus of detailed investigations during the M72/2 and M73/3a cruises of the German R/V Meteor and the ROV Quest 4000 m in February and March 2007. A large number of in-situ sediment temperature measurements were conducted from the ROV and with a sensor-equipped gravity corer. Gas hydrates were sampled in pressurized cores using a dynamic autoclave piston corer (DAPC). The thermal structure of the DMV suggests a regime of fluid flow at rates decreasing from the summit towards the edges of the mud volcano, accompanied by intermittent mud expulsion at the summit. Modeled gas hydrate dissociation temperatures reveal that the gas hydrates at the DMV are very close to the stability limits. Changes in heat flow due to variable seepage rates probably do not result in changes in sediment temperature but are compensated by gas hydrate dissociation and formation.
Resumo:
During the drilling of the southern Australian continental margin (Leg 182 of the Ocean Drilling Program), fluids with unusually high salinities (to 106?) were encountered in Miocene to Pleistocene sediments. At three sites (1127, 1129, and 1131), high contents of H2S (to 15%), CH4 (50%), and CO2 (70%) were also encountered. These levels of H2S are the highest yet reported during the history of either the Deep Sea Drilling Project or the Ocean Drilling Program. The high concentrations of H2S and CH4 are associated with anomalous Na+/Cl- ratios in the pore waters. Although hydrates were not recovered, and despite the shallow water depth of these sites (200-400 m) and relative warm bottom water temperatures (11-14°C), we believe that these sites possess disseminated H2S-dominated hydrates. This contention is supported by calculations using the measured gas concentrations and temperatures of the cores, and depths of recovery. High concentrations of H2S necessary for the formation of hydrates under these conditions were provided by the abundant (SO4)2- caused by the high salinities of the pore fluids, and the high concentrations of organic material. One hypothesis for the origin of these fluids is that they were formed on the adjacent continental shelf during previous lowstands of sea level and were forced into the sediments under the influence of hydrostatic head.
Resumo:
Sediments at the southern summit of Hydrate Ridge display two distinct modes of gas hydrate occurrence. The dominant mode is associated with active venting of gas exsolved from the accretionary prism and leads to high concentrations (15%-40% of pore space) of gas hydrate in seafloor or near-surface sediments at and around the topographic summit of southern Hydrate Ridge. These near-surface gas hydrates are mainly composed of previously buried microbial methane but also contain a significant (10%-15%) component of thermogenic hydrocarbons and are overprinted with microbial methane currently being generated in shallow sediments. Focused migration pathways with high gas saturation (>65%) abutting the base of gas hydrate stability create phase equilibrium conditions that permit the flow of a gas phase through the gas hydrate stability zone. Gas seepage at the summit supports rapid growth of gas hydrates and vigorous anaerobic methane oxidation. The other mode of gas hydrate occurs in slope basins and on the saddle north of the southern summit and consists of lower average concentrations (0.5%-5%) at greater depths (30-200 meters below seafloor [mbsf]) resulting from the buildup of in situ-generated dissolved microbial methane that reaches saturation levels with respect to gas hydrate stability at 30-50 mbsf. Net rates of sulfate reduction in the slope basin and ridge saddle sites estimated from curve fitting of concentration gradients are 2-4 mmol/m**3/yr, and integrated net rates are 20-50 mmol/m**2/yr. Modeled microbial methane production rates are initially 1.5 mmol/m**3/yr in sediments just beneath the sulfate reduction zone but rapidly decrease to rates of <0.1 mmol/m**3/yr at depths >100 mbsf. Integrated net rates of methane production in sediments away from the southern summit of Hydrate Ridge are 25-80 mmol/m**2/yr. Anaerobic methane oxidation is minor or absent in cored sediments away from the summit of southern Hydrate Ridge. Ethane-enriched Structure I gas hydrate solids are buried more rapidly than ethane-depleted dissolved gas in the pore water because of advection from compaction. With subsidence beneath the gas hydrate stability zone, the ethane (mainly of low-temperature thermogenic origin) is released back to the dissolved gas-free gas phases and produces a discontinuous decrease in the C1/C2 vs. depth trend. These ethane fractionation effects may be useful to recognize and estimate levels of gas hydrate occurrence in marine sediments.
Resumo:
Gas hydrate samples from various locations in the Gulf of Mexico (GOM) differ considerably in their microstructure. Distinct microstructure characteristics coincide with discrete crystallographic structures, gas compositions and calculated thermodynamic stabilities. The crystallographic structures were established by X-ray diffraction, using both conventional X-ray sources and high-energy synchrotron radiation. The microstructures were examined by cryo-stage Field-Emission Scanning Electron Microscopy (FE-SEM). Good sample preservation was warranted by the low ice fractions shown from quantitative phase analyses. Gas hydrate structure II samples from the Green Canyon in the northern GOM had methane concentrations of 70-80% and up to 30% of C2-C5 of measured hydrocarbons. Hydrocarbons in the crystallographic structure I hydrate from the Chapopote asphalt volcano in the southern GOM was comprised of more than 98% methane. Fairly different microstructures were identified for those different hydrates: Pores measuring 200-400 nm in diameter were present in structure I gas hydrate samples; no such pores but dense crystal surfaces instead were discovered in structure II gas hydrate. The stability of the hydrate samples is discussed regarding gas composition, crystallographic structure and microstructure. Electron microscopic observations showed evidence of gas hydrate and liquid oil co-occurrence on a micrometer scale. That demonstrates that oil has direct contact to gas hydrates when it diffuses through a hydrate matrix.