22 resultados para Figures of speech in literature
Resumo:
The SESRU_02_mesozooplankton dataset contains data collected in September 2008 at 15 stations located between 37°E and 39.5°E and between 42.4°N and 44.5°N in the north-eastern Black Sea. Samples were collected with a Juday net. Juday net: Vertical tows of a closing Juday net, with mouth area 0.1 m**2, mesh size 180 µm. Samples were taken from different layers. Towing speed: 1m/s. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Integrated samples were taken from the lower boundary of the oxic zone to the surface, stratified samples were taken according to CTD-profiles: samples were taken from the following depth strata: 1) the upper mixed layer (UML); 2) the layer of high temperature gradients (from the upper boundary of thermocline to the depth of 8 deg C temperature); 3) cold Intermediate layer (CIL) - the layer with the T< 8 deg C; 4) from the depth of sigma theta = 15.8 (oxycline) to the lower boundary of CIL; 5) from the depth of sigma theta = 16.2 to the depth of sigma theta = 15.8. Samples were analysed for zooplankton species and stage composition and abundance. The entire sample or an aliquot (1/2 to ¼) was analyzed under the binocular microscope. Mesozooplankton species and stages were identified and enumerated; meroplankton were identified and enumerated at higher taxonomic level. Taxonomic identification was done at Shirshov Institute of Oceanology using the relevant taxonomic literature (Rose, 1933, Brodsky, 1950 and Internet resources).
Resumo:
The dataset is based on samples collected in the autumn of 2001 in the Western Black Sea in front of Bulgaria coast. The whole dataset is composed of 42 samples (from 19 stations of National Monitoring Grid) with data of mesozooplankton species composition abundance and biomass. Samples were collected in the layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Kremena Stefanova using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972).
Resumo:
The "CoMSBlack92" dataset is based on samples collected in the summer of 1992 along the Bulgarian coast including coastal and open sea areas. The whole dataset is composed of 79 samples (28 stations) with data of zooplankton species composition, abundance and biomass. Sampling for zooplankton was performed from bottom up to the surface at standard depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 ?m. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Sampling volume was estimated by multiplying the mouth area with the wire length. The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972 ). The biomass was estimated as wet weight by Petipa, 1959 (based on species specific wet weight). Wet weight values were transformed to dry weight using the equation DW=0.16*WW as suggested by Vinogradov & Shushkina, 1987. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. The biomass was estimated as wet weight by Petipa, 1959 ussing standard average weight of each species in mg/m**3.
Resumo:
The "Hydroblack91" dataset is based on samples collected in the summer of 1991 and covers part of North-Western in front of Romanian coast and Western Black Sea (Bulgarian coasts) (between 43°30' - 42°10' N latitude and 28°40'- 31°45' E longitude). Mesozooplankton sampling was undertaken at 20 stations. The whole dataset is composed of 72 samples with data of zooplankton species composition, abundance and biomass. Samples were collected in discrete layers 0-10, 0-20, 0-50, 10-25, 25-50, 50-100 and from bottom up to the surface at depths depending on water column stratification and the thermocline depth. Zooplankton samples were collected with vertical closing Juday net,diameter - 36cm, mesh size 150 µm. Tows were performed from surface down to bottom meters depths in discrete layers. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area with the wire length. Mesozooplankton abundance: The collected materia was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). The biomass was estimated as wet weight by Petipa, 1959 (based on species specific wet weight). Wet weight values were transformed to dry weight using the equation DW=0.16*WW as suggested by Vinogradov & Shushkina, 1987. Taxon-specific abundance: The collected material was analysed using the method of Domov (1959). Samples were brought to volume of 25-30 ml depending upon zooplankton density and mixed intensively until all organisms were distributed randomly in the sample volume. After that 5 ml of sample was taken and poured in the counting chamber which is a rectangle form for taxomomic identification and count. Copepods and Cladoceras were identified and enumerated; the other mesozooplankters were identified and enumerated at higher taxonomic level (commonly named as mesozooplankton groups). Large (> 1 mm body length) and not abundant species were calculated in whole sample. Counting and measuring of organisms were made in the Dimov chamber under the stereomicroscope to the lowest taxon possible. Taxonomic identification was done at the Institute of Oceanology by Asen Konsulov using the relevant taxonomic literature (Mordukhay-Boltovskoy, F.D. (Ed.). 1968, 1969,1972). The biomass was estimated as wet weight by Petipa, 1959 ussing standard average weight of each species in mg/m3. WW were converted to DW by equation DW=0.16*WW (Vinogradov ME, Sushkina EA, 1987).
Resumo:
The SESRU01_mesozooplankton dataset contains data collected in April 2008 at 19 stations located between 37°E and 39.5°E and between 42.4°N and 44.5°N in the north-eastern Black Sea. Samples were collected with a Juday net (mesh size 180 ?m, mouth area 0.1 m**2). Integrated samples were taken from the lower boundary of the oxic zone to the surface, stratified samples were taken according to CTD-profiles: samples were taken from the following depth strata: 1) the upper mixed layer (UML); 2) the layer of high temperature gradients (from the upper boundary of thermocline to the depth of 8 deg C temperature); 3) cold Intermediate layer (CIL) - the layer with the T< 8 deg C; 4) from the depth of sigma theta = 15.8 (oxycline) to the lower boundary of CIL; 5) from the depth of sigma theta = 16.2 to the depth of sigma theta = 15.8. Samples were analysed for zooplankton species and stage composition and abundance. Juday net: Vertical tows of a closing Juday net, with mouth area 0.1 m**2, mesh size 180µm. Samples were taken from different layers. Towing speed: 1m/s. Samples were preserved by a 4% formaldehyde sea water buffered solution. Sampling volume was estimated by multiplying the mouth area by the wire length. The entire sample or an aliquot (1/2 to1/4) was analyzed under the binocular microscope. Mesozooplankton species and stages were identified and enumerated; meroplankton were identified and enumerated at higher taxonomic level. Taxonomic identification was done at Shirshov Institute of Oceanology using the relevant taxonomic literature (Rose, 1933, Brodsky, 1950, and Internet resources).
Resumo:
Dataset containing macrobenthos data for samples collected during April 2008 in the North-West Black Sea (between 44°46' - 43°45' N latitude and 30° 11' - 29°35' E longitude). Macrobenthos sampling was done in 4 stations using a 0.14 m**2 Van Veen grab. Washing of the sample through two sieves - 1 mm and 0.25 mm mesh size; the material retained by the two sieves was examined at the binocular microscope; all animals were extracted, using fine tweezers and the species or group of species were identified and counted (in order to determine the density of populations); the larger organisms were measured and weighed (structure and biomass); for smaller organisms, the average wet weights inscribed in standard tables were used to calculate the biomass. Taxonomic identification was done at the GeoEcoMar by A. Teaca and T. Begun using the relevant taxonomic literature (Key-book for the identification of the Black Sea and Sea of Azov Fauna, 1968 -1972, Kiev - in Russian, V 1-4; BACESCU, M.C., MÜLLER, G. I., GOMOIU, M.-T., 1971 and BACESCU, M.C., MÜLLER, G. I., GOMOIU, M.-T., 1971-Benthic ecological research to Black Sea. Comparative quantitative and qualitative analyse of pontic benthic fauna. Marine Ecology, 4, 1-357 (in Romanian).
Resumo:
Dataset containing macrobenthos data for samples collected during September 2008 in the North-West Black Sea (between 44°46' - 43°45' N latitude and 30° 11' - 29°35' E longitude). Macrobenthos sampling was done in 4 stations using a 0.14 m**2 Van Veen grab. Washing of the sample through two sieves - 1 mm and 0.25 mm mesh size; the material retained by the two sieves was examined at the binocular microscope; all animals were extracted, using fine tweezers and the species or group of species were identified and counted (in order to determine the density of populations); the larger organisms were measured and weighed (structure and biomass); for smaller organisms, the average wet weights inscribed in standard tables were used to calculate the biomass. Taxonomic identification was done at the GeoEcoMar by A. Teaca and T. Begun using the relevant taxonomic literature ( "Key-book for the identification of the Black Sea and Sea of Azov Fauna, 1968 -1972, Kiev - in Russian, V 1-4; BACESCU, M.C., MÜLLER, G. I., GOMOIU, M.-T., 1971). BACESCU, M.C., MÜLLER, G. I., GOMOIU, M.-T., 1971-Benthic ecological research to Black Sea. Comparative quantitative and qualitative analyse of pontic benthic fauna. Marine Ecology, 4, 1-357 (in Romanian). Key-book for the identification of the Black Sea and Sea of Azov Fauna, 1968 -1972, Kiev, V. 1-4 (in Russian).