18 resultados para Evangelical Association of North America
Resumo:
Peatland ecosystems store about 500-600 Pg of organic carbon, largely accumulated since the last glaciation. Whether they continue to sequester carbon or release it as greenhouse gases, perhaps in large amounts, is important in Earth's temperature dynamics. Given both ages and depths of numerous dated sample peatlands, their rate of carbon sequestration can be estimated throughout the Holocene. Here we use average values for carbon content per unit volume, the geographical extent of peatlands, and ecological models of peatland establishment and growth, to reconstruct the time-trajectory of peatland carbon sequestration in North America and project it into the future. Peatlands there contain ~163 Pg of carbon. Ignoring effects of climate change and other major anthropogenic disturbances, the rate of carbon accumulation is projected to decline slowly over millennia as reduced net carbon accumulation in existing peatlands is largely balanced by new peatland establishment. Peatlands are one of few long-term terrestrial carbon sinks, probably important for global carbon regulation in future generations. This study contributes to a better understanding of these ecosystems that will assist their inclusion in earth-system models, and therefore their management to maintain carbon storage during climate change.
Resumo:
This synthesis dataset contains records of freshwater peat and lake sediments from continental shelves and coastal areas. Information included is site location (when available), thickness and description of terrestrial sediments as well as underlying and overlying sediments, dates (when available), and references.
Resumo:
In northern regions where observational data is sparse, lake ice models are ideal tools as they can provide valuable information on ice cover regimes. The Canadian Lake Ice Model was used to simulate ice cover for a lake near Churchill, Manitoba, Canada throughout the 2008/2009 and 2009/2010 ice covered seasons. To validate and improve the model results, in situ measurements of the ice cover through both seasons were obtained using an upward-looking sonar device Shallow Water Ice Profiler (SWIP) installed on the bottom of the lake. The SWIP identified the ice-on/off dates as well as collected ice thickness measurements. In addition, a digital camera was installed on shore to capture images of the ice cover through the seasons and field measurements were obtained of snow depth on the ice, and both the thickness of snow ice (if present) and total ice cover. Altering the amounts of snow cover on the ice surface to represent potential snow redistribution affected simulated freeze-up dates by a maximum of 22 days and break-up dates by a maximum of 12 days, highlighting the importance of accurately representing the snowpack for lake ice modelling. The late season ice thickness tended to be under estimated by the simulations with break-up occurring too early, however, the evolution of the ice cover was simulated to fall between the range of the full snow and no snow scenario, with the thickness being dependant on the amount of snow cover on the ice surface.