74 resultados para E01 - Measurement and Data on National Income and Product Accounts and Wealth
Resumo:
The paper reports newly obtained stratigraphic, petrographic, and isotope geochronology data on modern moderately acid lavas from the Keli Highland of the Greater Caucasus and presents a geological map of the territory, in which 35 volcanoes active in Late Quaternary time were documented by the authors. Total duration of volcanic activity at the highland was estimated at 250 ka. Volcanic activity was discrete and occurred in three phases: Middle Neopleistocene (245-170 ka), Late Neopleistocene (135-70 ka), and Late Neopleistocene-Holocene (<30 ka). Newly obtained lines of evidence indicate that certain volcanoes erupted in the latest Neopleistocene-Holocene. The first phase of volcanic activity was connected mainly with lava volcanoes, and eruptions during the later phases of volcanic activity in this part of the Greater Caucasus produced mainly lavas. The most significant eruptions are demonstrated to occur in the territory during the second phase. The major evolutionary trends of volcanic processes during the final phase in the Keli Highland are determined. It was also determined that overwhelming majority of volcanoes that were active less than 30 ka BP are spatially restricted to long-liven local magmatic zones, which were active during either all three or only the final two phases of activity. These parts of the territory are, perhaps, the most hazardous in terms of volcanic activity.
Resumo:
This data set contains four time series of particulate and dissolved soil nitrogen measurements from the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. 1. Total nitrogen from solid phase: Stratified soil sampling was performed every two years since before sowing in April 2002 and was repeated in April 2004, 2006 and 2008 to a depth of 30 cm segmented to a depth resolution of 5 cm giving six depth subsamples per core. In 2002 five samples per plot were taken and analyzed independently. Averaged values per depth layer are reported. In later years, three samples per plot were taken, pooled in the field, and measured as a combined sample. Sampling locations were less than 30 cm apart from sampling locations in other years. All soil samples were passed through a sieve with a mesh size of 2 mm in 2002. In later years samples were further sieved to 1 mm. No additional mineral particles were removed by this procedure. Total nitrogen concentration was analyzed on ball-milled subsamples (time 4 min, frequency 30 s-1) by an elemental analyzer at 1150°C (Elementaranalysator vario Max CN; Elementar Analysensysteme GmbH, Hanau, Germany). 2. Total nitrogen from solid phase (high intensity sampling): In block 2 of the Jena Experiment, soil samples were taken to a depth of 1m (segmented to a depth resolution of 5 cm giving 20 depth subsamples per core) with three replicates per block ever 5 years starting before sowing in April 2002. Samples were processed as for the more frequent sampling but were always analyzed independently and never pooled. 3. Mineral nitrogen from KCl extractions: Five soil cores (diameter 0.01 m) were taken at a depth of 0 to 0.15 m (and between 2002 and 2004 also at a depth of 0.15 to 0.3 m) of the mineral soil from each of the experimental plots at various times over the years. In addition also plots of the management experiment, that altered mowing frequency and fertilized subplots (see further details below) were sampled in some later years. Samples of the soil cores per plot (subplots in case of the management experiment) were pooled during each sampling campaign. NO3-N and NH4-N concentrations were determined by extraction of soil samples with 1 M KCl solution and were measured in the soil extract with a Continuous Flow Analyzer (CFA, 2003-2005: Skalar, Breda, Netherlands; 2006-2007: AutoAnalyzer, Seal, Burgess Hill, United Kingdom). 4. Dissolved nitrogen in soil solution: Glass suction plates with a diameter of 12 cm, 1 cm thickness and a pore size of 1-1.6 µm (UMS GmbH, Munich, Germany) were installed in April 2002 in depths of 10, 20, 30 and 60 cm to collect soil solution. The sampling bottles were continuously evacuated to a negative pressure between 50 and 350 mbar, such that the suction pressure was about 50 mbar above the actual soil water tension. Thus, only the soil leachate was collected. Cumulative soil solution was sampled biweekly and analyzed for nitrate (NO3-), ammonium (NH4+) and total dissolved nitrogen concentrations with a continuous flow analyzer (CFA, Skalar, Breda, The Netherlands). Nitrate was analyzed photometrically after reduction to NO2- and reaction with sulfanilamide and naphthylethylenediamine-dihydrochloride to an azo-dye. Our NO3- concentrations contained an unknown contribution of NO2- that is expected to be small. Simultaneously to the NO3- analysis, NH4+ was determined photometrically as 5-aminosalicylate after a modified Berthelot reaction. The detection limits of NO3- and NH4+ were 0.02 and 0.03 mg N L-1, respectively. Total dissolved N in soil solution was analyzed by oxidation with K2S2O8 followed by reduction to NO2- as described above for NO3-. Dissolved organic N (DON) concentrations in soil solution were calculated as the difference between TDN and the sum of mineral N (NO3- + NH4+).
Resumo:
Results of studies in two biogeochemically active zones of the Atlantic Ocean (the Benguela upwelling waters and the region influenced by the Congo River run-off) are reported in the book. A multidisciplinary approach included studies of the major elements of the ocean ecosystem: sea water, plankton, suspended matter, bottom sediments, interstitial waters, aerosols, as well as a wide complex of oceanographic studies carried out under a common program. Such an approach, as well as a use of new methodical solutions led to obtaining principally new information on different aspects of oceanology.
Resumo:
Lithological horizons have been distinguished in sediments cores from different parts of the Sea of Okhotsk based on primary descriptions of sediments and smear slides, and analyses of contents of both calcium carbonate and organic carbon, and opal. Sediment lithology has been correlated with oxygen isotope records and the standard isotope scale and radiocarbon data by AMS method for three cores studied in detail. This allowed to determine in detail periods of carbonaceous and diatomaceous ooze accumulation in the Sea of Okhotsk. Changes in magnetic susceptibility and grain size composition of sediments have been also compared with oxygen-isotope curves and radiocarbon datings. Obtained results confirm that variations in magnetic susceptibility are related with oxygen-isotope stages and influenced by climatic changes. Tephra interlayers K0, TR, K2, K3 have been identified by mineralogical analyses in all studied cores. Stratigraphic location of these tephra interlayers in detailed studied cores and their radiocarbon ages (8.1, 8.05, 26.8, and about 60 ka, respectively) provided base correlation between the interlayers and volcanic eruptions on the Kamchatka Peninsula and the Kuril Islands. This allows to use the former ones as time markers for deep-sea sediments of the Sea of Okhotsk. New lithostratigraphic and tephrochronologic data obtained allowed to correlate Upper Quaternary sediments from the Sea of Okhotsk.
Resumo:
Invasive species allow an investigation of trait retention and adaptations after exposure to new habitats. Recent work on corals from the Gulf of Aqaba (GoA) shows that tolerance to high temperature persists thousands of years after invasion, without any apparent adaptive advantage. Here we test whether thermal tolerance retention also occurs in another symbiont-bearing calcifying organism. To this end, we investigate the thermal tolerance of the benthic foraminifera Amphistegina lobifera from the GoA (29° 30.14167 N 34° 55.085 E) and compare it to a recent "Lessepsian invader population" from the Eastern Mediterranean (EaM) (32° 37.386 N, 34°55.169 E). We first established that the studied populations are genetically homogenous but distinct from a population in Australia, and that they contain a similar consortium of diatom symbionts, confirming their recent common descent. Thereafter, we exposed specimens from GoA and EaM to elevated temperatures for three weeks and monitored survivorship, growth rates and photophysiology. Both populations exhibited a similar pattern of temperature tolerance. A consistent reduction of photosynthetic dark yields was observed at 34°C and reduced growth was observed at 32°C. The apparent tolerance to sustained exposure to high temperature cannot have a direct adaptive importance, as peak summer temperatures in both locations remain <32°C. Instead, it seems that in the studied foraminifera tolerance to high temperature is a conservative trait and the EaM population retained this trait since its recent invasion. Such pre-adaptation to higher temperatures confers A. lobifera a clear adaptive advantage in shallow and episodically high temperature environments in the Mediterranean under further warming.
Resumo:
A reliable assessment of relevant substance flows is very important for environmental risk assessments and efficiency analysis of measures to reduce or avoid emissions of micropollutants like drugs to water systems. Accordingly, a detailed preparation of monitoring campaigns should include an accuracy check for the sampling configuration to prove the reliability of the monitoring results and the subsequent data processing. The accuracy of substance flow analyses is expected to be particularly weak for substances having high short-term variations of concentrations in sewage. This is especially the case linked to the observation of substance flows close to source in waste water systems. The verification of a monitoring configuration in a hospital sewer in Luxembourg is in the centre of interest of the case study presented here. A tracer test in the sewer system under observation is an essential element of the suggested accuracy check and provides valuable information for an uncertainty analysis. The results illustrate the importance of accuracy checks as an essential element of the preparation of monitoring campaigns. Moreover the study shows that continuous flow proportional sampling enables a representative observation of short-term peak loads of the iodinated x-ray contrast media iobitridol close to source.