23 resultados para Difference Equations with Maxima
Resumo:
An increase in whole ocean alkalinity during glacial periods could account, in part, for the drawdown of atmospheric CO2 into the ocean. Such an increase was inevitable due to the near elimination of shelf area for the burial of coral reef alkalinity. We present evidence, based on down-core measurements of benthic foraminiferal B/Ca and Mg/Ca from a core in the Weddell Sea, that the deep ocean carbonate ion concentration, [CO3 2-], was elevated by ~25 µmol/kg during each glacial period of the last 800 kyrs. The heterogeneity of the preservation histories in the different ocean basins reflects control of the carbonate chemistry of the deep glacial ocean in the Atlantic and Pacific by the changing ventilation and chemistry of Weddell Sea waters. These waters are more corrosive than interglacial northern sourced waters, but not as undersaturated as interglacial southern sourced waters. Our inferred increase in whole ocean alkalinity can be reconciled with reconstructions of glacial saturation horizon depth and the carbonate budget, if carbonate burial rates also increased above the saturation horizon as a result of enhanced pelagic calcification. The Weddell records display low [CO3 2-] during deglaciations and peak interglacial warmth, coincident with maxima in %CaCO3 in the Atlantic and Pacific Oceans. Should the burial rate of alkalinity in the more alkaline glacial deepwaters outstrip the rate of alkalinity supply, then pelagic carbonate production by the coccolithophores, at the end of the glacial maximum could drive a decrease in ocean [CO3 2-] and act to trigger the deglacial rise in pCO2.
Resumo:
Abundance and species composition of copepods were studied during the expedition ANT XXI/1 on a latitudinal transect in the eastern Atlantic from 34°49.5' N to 27°28.1' S between 2-20 November 2002. Stratified zooplankton tows were carried out at 19 stations with a multiple opening-closing net between 300 m water depth and the surface. Cyclopoid and calanoid copepods showed similar patterns of distribution and abundance. Oithona was the most abundant cyclopoid genus, followed by Oncaea. A total of 149 calanoid copepod species were identified. Clausocalanus was by far the most abundant genus, comprising on average about 45% of all calanoids, followed by Calocalanus (13%), Delibus (9%), Paracalanus (6%), and Pleuromamma (5%). All other genera comprised on average less than 5% each, with 40 genera less than 1%. The calanoid copepod communities were distinguished broadly in accordance with sea surface temperature, separating the subtropical from the tropical stations, and were largely determined by variation in species composition and species abundance. Nine Clausocalanus species were identified. The most numerous Clausocalanus species was C. furcatus, which on average comprised half of all adult of this genus. C. pergens, C. paululus, and C. jobei, contributed an average of 19%, 9%, and 9%, respectively. The Clausocalanus species differed markedly in their horizontal and vertical distributions: C. furcatus, C. jobei, and C. mastigophorus had widespread distributions and inhabited the upper water layers. Major differences between the species were found in abundance. C. paululus and C. arcuicornis were biantitropical and were absent or occurred in very low numbers in the equatorial zone. C. parapergens was found at all stations and showed a bimodal distribution pattern with maxima in the subtropics. C. pergens occurred in higher numbers only at the southern stations, where it replaced C. furcatus in dominance. In contrast to the widespread species, the bulk of the C. paululus, C. arcuicornis, C. parapergens, and C. pergens populations was concentrated in the colder, deeper water layers below the thermocline, thereby avoiding the warm surface waters. C. lividus was found only at the most northern and C. ingens only at the most southern stations. Both species were found almost exclusively in the upper 50 m. The distinct differences in abundance and horizontal and vertical distribution suggest a strong ecological differentiation among the Clausocalanus species.
Resumo:
Modern sedimentary total organic carbon (TOC) content as a proxy for surface water export production was mapped on the shelf and on the upper continental slope of the Benguela upwelling system using 137 core tops. Shelf maxima in TOC can be correlated with maxima in surface water productivity. On the slope, high TOC contents are observed offshore from sites of strong modern upwelling. Estimates of modern TOC mass accumulation rates (MAR) show that approximately 85% of the total is accumulating on the shelf. TOC MAR were calculated, mapped, and budgeted for the Holocene and for the Last Glacial Maximum (LGM) using 19 sediment cores from the continental slope. During the LGM, centers of deposition and production have migrated offshore with respect to their Holocene positions. TOC accumulation on the continental slope was approximately 84% higher during the LGM than during the Holocene, possibly reflecting enhanced productivity. The TOC distribution patterns and sediment echo sounding data suggest that undercurrents strongly influence the sedimentation off Namibia. Winnowing and focusing result in great lateral heterogeneity of sedimentation rates and sediment properties. Individual cores therefore do not necessarily reflect general changes in export production. These results highlight the need for detailed regional studies based on a large number of sediment cores for highly heterogeneous high-productivity areas in order to derive general statements on total fluxes.
Resumo:
The mineralogy of the lower Miocene and Quaternary sediments of the drillcore CRP-1 (McMurdo Sound, Ross Sea, Antarctica) has been analysed using the X-ray diffraction method. Quartz, plagioclase feldspars, K-feldspars are the most important non-clay minerals. Amphiboles occur throughout the core in minor amounts. The composition of the sediments points to an origin in the Transantarctic Mountains for the majority of the detrital components. There, the plutonic and metamorphic rocks of the basement, the sediments of the Beacon Supergroup and the volcanic rocks of the Ferrar Dolerite could serve as possible source lithologies. The quartz abundance is strongly linked to the gain size of the sediments with maxima correlating with coarse gain sizes. The downcore distribution of the other detrital minerals is relatively invariable, and does not indicate a major change in the source area during the time represented by the CRP-1 sediments. Some diagenetic alteration of the sediments is indicated by the occurrence of minor amounts of opal-CT and by some clinoptilolite below110 m depth.
Resumo:
Site 532 on the Walvis Ridge was sampled at 4000- to 800-year intervals from 2.24 to 2.60 Ma, spanning the three large glacial advances of the late Pliocene. An age model was created by correlating the oxygen isotope record to Site 607 with linear interpolations between tie-lines. The resultant age model differs from that in the site reports by more than 800,000 years, due to misidentification of a magnetic boundary. Sedimentation rates varied by an order of magnitude at this site, with minimum accumulation during glacial events. Interglacial intervals were charactrized by high marine production and high summer precipitation on land, while glacials had very low production and arid continental climate. During the large glacial events (Stages 96-100) conditions of low production and continental aridity reached their greatest intensity, but there is no evidence of a permanent mode shift in either marine or terrestrial records. Calcite concentration has a strong variation at obliquity frequencies, with maxima during interglacials, but occasionally shows a large amplitude at precessional frequencies as well, so that high concentrations occur in a few glacial intervals. As a result, color variation is not a reliable guide to glacial-scale cycles at this site. Composition of the phytoplankton assemblage is diverse and highly variable, and we have not been able to distinguish a clear indicator of upwelling-related production. Spectral analysis reveals obliquity and precessional signals in the pollen data, while several diatom records contain combination tones, indicating that these data represent a complicated response to both local and high-latitude forcing.
Resumo:
Particle reactive elements are scavenged to a higher degree at ocean margins than in the open ocean due to higher fluxes of biogenic and terrigenous particles. In order to determine the influence of these processes on the depositional fluxes of 10Be and barium we have performed high-resolution measurements on sediment core GeoB1008-3 from the Congo Fan. Because the core is dominated by terrigenous matter supplied by the Congo River, it has a high average mass accumulation rate of 6.5 cm/kyr. Biogenic 10Be and Ba concentrations were calculated from total concentrations by subtracting the terrigenous components of10Be and Ba, which are assumed to be proportional to the flux of Al2O3. The mean Ba/Al weight ratio of the terrigenous component was determined to be 0.0045. The unusualy high terrigenous 10Be concentrations of 9.1 * 10**9 atoms/g Al2O3 are either due to input of particles with high10Be content by the Congo River or due to scavenging of oceanic 10Be by riverine particles. The maxima of biogenic 10Be and Ba concentrations coincide with maxima of the paleoproductivity rates. Time series analysis of the 10Be and of Ba concentration profiles reveals a strong dominance of the precessional period of 24 kyr, which also controls the rates of paleoproductivity in this core. During the maxima of productivity the flux of biogenic Ba is enhanced to a larger extent than that of biogenic 10Be. Applying a model for coastal scavenging, we ascribe the observed higher sensitivity of Ba to biogenic particle fluxes to the fact that the ocean residence time of Ba is approximately 10 times longer than that of 10Be.
Resumo:
Geostrophic surface velocities can be derived from the gradients of the mean dynamic topography-the difference between the mean sea surface and the geoid. Therefore, independently observed mean dynamic topography data are valuable input parameters and constraints for ocean circulation models. For a successful fit to observational dynamic topography data, not only the mean dynamic topography on the particular ocean model grid is required, but also information about its inverse covariance matrix. The calculation of the mean dynamic topography from satellite-based gravity field models and altimetric sea surface height measurements, however, is not straightforward. For this purpose, we previously developed an integrated approach to combining these two different observation groups in a consistent way without using the common filter approaches (Becker et al. in J Geodyn 59(60):99-110, 2012, doi:10.1016/j.jog.2011.07.0069; Becker in Konsistente Kombination von Schwerefeld, Altimetrie und hydrographischen Daten zur Modellierung der dynamischen Ozeantopographie, 2012, http://nbn-resolving.de/nbn:de:hbz:5n-29199). Within this combination method, the full spectral range of the observations is considered. Further, it allows the direct determination of the normal equations (i.e., the inverse of the error covariance matrix) of the mean dynamic topography on arbitrary grids, which is one of the requirements for ocean data assimilation. In this paper, we report progress through selection and improved processing of altimetric data sets. We focus on the preprocessing steps of along-track altimetry data from Jason-1 and Envisat to obtain a mean sea surface profile. During this procedure, a rigorous variance propagation is accomplished, so that, for the first time, the full covariance matrix of the mean sea surface is available. The combination of the mean profile and a combined GRACE/GOCE gravity field model yields a mean dynamic topography model for the North Atlantic Ocean that is characterized by a defined set of assumptions. We show that including the geodetically derived mean dynamic topography with the full error structure in a 3D stationary inverse ocean model improves modeled oceanographic features over previous estimates.
Resumo:
Changes in surface water hydrography in the Southern Ocean (eastern Atlantic sector) could be reconstructed on the basis of isotope-geochemical and micropaleontological studies. A total of 75 high quality multicorer sediment surface samples from the southern South Atlantic Ocean and three Quaternary sediment cores, taken on a meridional transect across the Antarctic Circumpolar Current, have been investigated. The results of examining stable oxygen isotope compositions of 24 foraminiferal species and morphotypes were compared to the near-surface hydrography. The different foraminifera have been divided into four groups living at different depths in the upper water column. The 8180 differences between shallow-living (e.g. G. bulloides, N. pachyderma) and deeper-dwelling (e. g. G. inflata) species reflect the measured temperature gradient of the upper 250 m in the water column. Thus, the 6180 difference between shallow-living and deeper-living foraminifera can be used as an indicator for the vertical temperature gradient in the surface water of the Antarctic Circumpolar Current, which is independent of ice volume. All planktonic foraminifera in the surface sediment samples have been counted. 27 species and morphotypes have been selected, to form a reference data Set for statistical purposes. By using R- and Q-mode principal component analysis these planktonic foraminifera have been divided into four and five assemblages, respectively. The geographic distribution of these assemblages is mainly linked to the temperature of sea-surface waters. The five assemblages (factors) of the Q-mode principal component analysis account for 97.l % of the variance of original data. Following the transferfunction- technique a multiple regression between the Q-mode factors and the actual mean sea-surface environmental parameters resulted in a set of equations. The new transfer function can be used to estimate past sea-surface seasonal temperatures for paleoassemblages of planktonic foraminifera with a precision of approximately ±1.2°C. This transfer function F75-27-5 encompasses in particular the environmental conditions in the Atlantic sector of the Antarctic Circumpolar Current. During the last 140,000 years reconstructed sea-surface temperatures fluctuated in the present northern Subantarctic Zone (PS2076-1/3) at an amplitude of up to 7.5°C in summer and of up to 8.5°C in winter. In the present Polarfrontal Zone (PS1754-1) these fluctuations between glacials and interglacials show lower temperatures from 2.5 to 8.5°C in summer and from 1.0 to 5.0°C in winter, respectively. Compared to today, calculated oxygen isotope temperature gradients in the present Subantarctic Zone were lower during the last 140,000 years. This is an indicator for a good mixing of the upper water column. In the Polarfrontal Zone also lower oxygen isotope temperature gradients were found for the glacials 6, 4 and 2. But almost similar temperature gradients as today were found during the interglacial stages 5, 3 and the Holocene, which implicates a mixing of the upper water column compared to present. Paleosalinities were reconstructed by combining d18O-data and the evaluated transfer function paleotemperatures. Especially in the present Polarfrontal Zone (PS1754-1) and in the Antarctic Zone (PS1768-8), a short-term reduction of salinity up to 4 %o, could be detected. This significant reduction in sea-surface water salinity indicates the increased influx of melt-water at the beginning of deglaciation in the southern hemisphere at the end of the last glacial, approximately 16,500-13,000 years ago. The reconstruction of environmental Parameters indicates only small changes in the position of the frontal Systems in the eastern sector of the Antarctic Circumpolar Current during the last 140,000 years. The average position of the Subtropical Front and Subantarctic Front shifted approximately three latitudes between interglacials and glacials. The Antarctic Polar Front shifted approximately four latitudes. But substantial modifications of this scenario have been interpreted for the reconstruction of cold sea-surface temperatures at 41Â S during the oxygen isotope stages 16 and 14 to 12. During these times the Subtropical Front was probably shified up to seven latitudes northwards.