19 resultados para Coastal lagoon


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This synthesis dataset contains records of freshwater peat and lake sediments from continental shelves and coastal areas. Information included is site location (when available), thickness and description of terrestrial sediments as well as underlying and overlying sediments, dates (when available), and references.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The South America southern coast exhibits many outcrops with abundant shell beds, from the Pleistocene through the Recent. How much biological information is preserved within these shell beds? Or, what is the actual probability a living community has to leave a fossil record corresponding to these shell deposits? Although ecological and biogeographical aspects might had been pointed, considering these temporal scales, up to the moment there is no taphonomically-oriented studies available. Quantitative comparisons between living (LAs), death (DAs) and fossil assemblages (FAs) are important not only in strictly taphonomic studies, but have grown a leading tool for conservation paleobiology analysis. Comparing LAs, DAs and FAs from estuaries and lagoons in the Rio Grande do Sul Coastal Plain makes possible to quantitatively understand the nature and quantity of biological information preserved in fossil associations in Holocene lagoon facies. As already noted by several authors, spatial scale parts the analysis, but we detected that the FAs refl ects live ones, rather than dead ones, as previously not realized. The results herein obtained illustrates that species present in DA are not as good preserved in recent (Holocene) fossil record as originally thought. Strictly lagoon species are most prone to leave fossil record. The authors consider that the fi delity pattern here observed for estuarine mollusks to be driven by (i) high temporal and spatial variability in the LAs, (ii) spatial mixing in the DA and (iii) differential preservation of shells, due to long residence times in the taphonomically active zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution, abundance, behaviour, and morphology of marine species is affected by spatial variability in the wave environment. Maps of wave metrics (e.g. significant wave height Hs, peak energy wave period Tp, and benthic wave orbital velocity URMS) are therefore useful for predictive ecological models of marine species and ecosystems. A number of techniques are available to generate maps of wave metrics, with varying levels of complexity in terms of input data requirements, operator knowledge, and computation time. Relatively simple "fetch-based" models are generated using geographic information system (GIS) layers of bathymetry and dominant wind speed and direction. More complex, but computationally expensive, "process-based" models are generated using numerical models such as the Simulating Waves Nearshore (SWAN) model. We generated maps of wave metrics based on both fetch-based and process-based models and asked whether predictive performance in models of benthic marine habitats differed. Predictive models of seagrass distribution for Moreton Bay, Southeast Queensland, and Lizard Island, Great Barrier Reef, Australia, were generated using maps based on each type of wave model. For Lizard Island, performance of the process-based wave maps was significantly better for describing the presence of seagrass, based on Hs, Tp, and URMS. Conversely, for the predictive model of seagrass in Moreton Bay, based on benthic light availability and Hs, there was no difference in performance using the maps of the different wave metrics. For predictive models where wave metrics are the dominant factor determining ecological processes it is recommended that process-based models be used. Our results suggest that for models where wave metrics provide secondarily useful information, either fetch- or process-based models may be equally useful.