41 resultados para C. finmarchicus


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The feeding strategies of Calanus hyperboreus, C. glacialis, and C. finmarchicus were investigated in the high-Arctic Svalbard region (77-81 °N) in May, August, and December, including seasons with algal blooms, late- to post-bloom situations, and unproductive winter periods. Stable isotope and fatty acid trophic marker (FATM) techniques were employed together to assess trophic level (TL), carbon sources (phytoplankton vs. ice algae), and diet of the three Calanus species. In addition, population development, distribution, and nutritional state (i.e. storage lipids) were examined to estimate their population status at the time of sampling. In May and August, the vertical distribution of the three Calanus species usually coincided with the maximum algal biomass. Their stable isotope and fatty acid (FA) composition indicated that they all were essentially herbivores in May, when the algal biomass was highest. Their FA composition, however, revealed different food preferences. C. hyperboreus had high proportions of 18:4n3, suggesting that it fed mainly on Phaeocystis, whereas C. glacialis and C. finmarchicus had high proportions of 16:4n1, 16:1n7, and 20:5n3, suggesting diatoms as their major food source. Carbon sources (i.e. phytoplankton vs. ice algae) were not possible to determine solely from FATM techniques since ice-diatoms and pelagic-diatoms were characterised by the same FA. However, the enriched d13C values of C. glacialis and C. finmarchicus in May indicated that they fed both on pelagic- and ice-diatoms. Patterns in absolute FA and fatty alcohol composition revealed that diatoms were the most important food for C. hyperboreus and C. glacialis, followed by Phaeocystis, whereas diatoms, Phaeocystis and other small autotrophic flagellates were equally important food for C. finmarchicus. During periods of lower algal biomass, only C. glacialis exhibited evidence of significant dietary switch, with a TL indicative of omnivory (mean TL=2.4). Large spatial variability was observed in population development, distribution, and lipid store sizes in August. At the northernmost station at the southern margin of the Arctic Ocean, the three Calanus species had similarly low lipid stores as they had in May, suggesting that they ascended later in the year. In December, relatively lipid-rich specimens had TL similar to those during the peak productive season (TL~2.0), suggesting that they were hibernating and not feeding on the available refractory material available at that time of the year. In contrast, lipid-poor specimens in December had substantially high TL (TL=2.5), suggesting that they were active and possibly were feeding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

At present time, there is a lack of knowledge on the interannual climate-related variability of zooplankton communities of the tropical Atlantic, central Mediterranean Sea, Caspian Sea, and Aral Sea, due to the absence of appropriate databases. In the mid latitudes, the North Atlantic Oscillation (NAO) is the dominant mode of atmospheric fluctuations over eastern North America, the northern Atlantic Ocean and Europe. Therefore, one of the issues that need to be addressed through data synthesis is the evaluation of interannual patterns in species abundance and species diversity over these regions in regard to the NAO. The database has been used to investigate the ecological role of the NAO in interannual variations of mesozooplankton abundance and biomass along the zonal array of the NAO influence. Basic approach to the proposed research involved: (1) development of co-operation between experts and data holders in Ukraine, Russia, Kazakhstan, Azerbaijan, UK, and USA to rescue and compile the oceanographic data sets and release them on CD-ROM, (2) organization and compilation of a database based on FSU cruises to the above regions, (3) analysis of the basin-scale interannual variability of the zooplankton species abundance, biomass, and species diversity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The under-ice habitat and fauna were studied during a typical winter situation at three stations in the western Barents Sea. Dense pack ice (7-10/10) prevailed and ice thickness ranged over <0.1-1.6 m covered by <0.1-0.6 m of snow. Air temperatures ranged between -1.8 and -27.5°C. The ice undersides were level, white and smooth. Temperature and salinity profiles in the under-ice water (0-5 m depth) were not stratified (T=-1.9 to -2.0°C and S=34.2-34.7). Concentrations of inorganic nutrients were high and concentrations of algal pigments were very low (0.02 µg chlorophyll a/l), indicating the state of biological winter. Contents of particulate organic carbon and nitrogen ranged over 84.2-241.3 and 5.3-16.4 µg/l, respectively, the C/N ratio over 11.2-15.5 pointing to the dominance of detritus in the under-ice water. Abundances of amphipods at the ice underside were lower than in other seasons: 0-1.8 ind/m**2 for Apherusa glacialis, 0-0.7 ind/m**2 for Onisimus spp., and 0-0.8 ind/m**2 for Gammarus wilkitzkii. A total of 22 metazoan taxa were found in the under-ice water, with copepods as the most diverse and numerous group. Total abundances ranged over 181-2,487 ind/m**3 (biomass: 70-2,439 µg C/m**3), showing lower values than in spring, summer and autumn. The dominant species was the calanoid copepod Pseudocalanus minutus (34-1,485 ind/m**3), contributing 19-65% to total abundances, followed by copepod nauplii (85-548 ind/m**3) and the cyclopoid copepod Oithona similis (44-262 ind/m**3). Sympagic (ice-associated) organisms occurred only rarely in the under-ice water layer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Vertical distribution of mesoplankton was studied over a single season in 2001 at two sites in the western and eastern parts of the northern margin of the North Atlantic gyre. Plankton was sampled both with use of BR 113/140 net and observed from the Mir deep-sea manned submersible. In near-slope waters southeast of Newfoundland (Titanic Polygon) there occurred intensive interaction between subtropical and sub-polar waters and plankton communities. The subtropical gyre community being more mature from the succession viewpoint created a ''net'' of carnivores and scavengers (shrimp and smaller animals) feeding plankton supplied from the north and thus increasing their own biomass. Due to features of hydrological conditions in 2001 in contrast to other years, the plankton supplied from the north was dominated by small copepods, while abundance of larger Calanus hyperboreus was small. Perhaps due to this fact, abundance of macroplanktonic shrimp decreased, while abundance of mesoplanktonic carnivores (Themisto, Sagitta, and Pareuchaeta) increased. In East Atlantic, within the Porcupine abyssal plain (Bismark Polygon) contrasts in frontal boundaries decreased and community interaction became less expressed. While vertical distribution of plankton at Titanic Polygon was characterized by a series of extraordinary features, distribution at Bismark Polygon was much more ordinary.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In summer 2003 we continued our long-term series of observations over the zooplankton community within the Titanic Polygon (area of the frontal zone of Gulf Stream and the Labrador Current) in the North Atlantic, where interaction of ecosystems of subpolar and warm waters takes place. Depending on hydrological situation occurring in the frontal zone interrelated interannual variations in abundance and biomass of plankton species including Calanus hyperboreus and mesopelagic shrimps of Acanthephyra genus were observed. In different years contribution of two parallel trophic nets passing primarily through the larger and smaller plankters to formation of the community varied. Data on the size structure of population of macroplankton shrimps are presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lipids of the Arctic ctenophore Mertensia ovum, collected from Kongsfjorden (Svalbard) in 2001, were analysed to investigate seasonal variability and fate of dietary lipids. Total lipids, lipid classes and fatty acid and alcohol compositions were determined in animals, which were selected according to age-group and season. Changes in lipids of age-group 0 animals were followed during growth from spring to autumn. Total lipids increased from May to September. Lipids as percentage of dry mass were lowest in August indicating their use for reproduction. Higher values occurred in September, which may be due to lipid storage for overwintering. Wax esters were the major lipid class accounting for about 50% of total lipids in age-group 0 animals from July and August. Phospholipids were the second largest lipid fraction with up to 46% in this age-group. The principal fatty acids of M. ovum from all age-groups were 22:6(n-3), 20:5(n-3) and 16:0. Wax ester fatty alcohols were dominated by 22:1(n-11) and 20:1(n-9) followed by moderate proportions of 16:0. The unique feature of M. ovum lipids was the high amount of free fatty alcohols originating probably from the dietary wax esters. In May, free alcohols exhibited the highest mean proportion with 14.6% in age-group 0 animals. We present the first data describing a detailed free fatty alcohol composition in zooplankton. This composition was very different from the alcohol composition of M. ovum wax esters because of the predominance of the long-chain monounsaturated 22:1 (n-11) alcohol accounting for almost 100% of total free alcohols in some samples. The detailed lipid composition clearly reflected feeding of M. ovum on the herbivorous calanoid species, Calanus glacialis and C. finmarchicus, the abundant members of the zooplankton community in Kongsfjorden. Other copepod species or prey items seem to be less important for M. ovum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Qualitative and quantitative mesozooplankton composition was examined on materials collected during an expedition carried out in October 1998 onboard the research icebreaker Akademik Fedorov. At different stations number of species varied from 25 to 33; wet biomass - from 20 to 109 g/m**2. Flux of autochthonous organic matter through plankton communities calculated from data on structural and functional analysis was from 2 to 40 mg C/m**2/day.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Samples of zooplankton were collected in the Barents Sea during cruise 11 of R/V Akademik Sergey Vavilov in September-October 1997. Three different sampling methods were used: 30 l bottle, Judey net, and BR net. More than 40 species of zooplankton were revealed. The greatest species diversity occurred in zones of junction of waters of different origin. Within the 100 m upper water layer zooplankton biomass was rather high: aver. 32 g/m**2. The highest biomass was observed in the northeastern part of the region under study and over the shelf of the Russkaya Gavan' Bay. The lowest biomass occurred in the southern part and in the region of the Gusinaya Banka. The average autumn value of zooplankton biomass in the 100 m upper layer (321 mg/m**3) slightly exceeded the multiannual average for the summer period (200 mg/m**3)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Presented are physical and biological data for the region extending from the Barents Sea to the Kara Sea during 158 scientific cruises for the period 1913-1999. Maps with the temporal distribution of physical and biological variables of the Barents and Kara Seas are presented, with proposed quality control criteria for phytoplankton and zooplankton data. Changes in the plankton community structure between the 1930s, 1950s, and 1990s are discussed. Multiple tables of Arctic Seas phytoplankton and zooplankton species are presented, containing ecological and geographic characteristics for each species, and images of live cells for the dominant phytoplankton species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The continuous plankton recorder (CPR) survey is an upper layer plankton monitoring program that has regularly collected samples, at monthly intervals, in the North Atlantic and adjacent seas since 1946. Water from approximately 6 m depth enters the CPR through a small aperture at the front of the sampler and travels down a tunnel where it passes through a silk filtering mesh of 270 µm before exiting at the back of the CPR. The plankton filtered on the silk is analyzed in sections corresponding to 10 nautical miles (approx. 3 m**3 of seawater filtered) and the plankton microscopically identified (Richardson et al., 2006 and reference therein). In the present study we used the CPR data to investigate the current basin scale distribution of C. finmarchicus (C5-C6), C. helgolandicus (C5-C6), C. hyperboreus (C5-C6), Pseudocalanus spp. (C6), Oithona spp. (C1-C6), total Euphausiida, total Thecosomata and the presence/absence of Cnidaria and the Phytoplankton Colour Index (PCI). The PCI, which is a visual assessment of the greenness of the silk, is used as an indicator of the distribution of total phytoplankton biomass across the Atlantic basin (Batten et al., 2003). Monthly data collected between 2000 and 2009 were gridded using the inverse-distance interpolation method, in which the interpolated values were the nodes of a 2 degree by 2 degree grid. The resulting twelve monthly matrices were then averaged within the year and in the case of the zooplankton the data were log-transformed (i.e. log10 (x+1).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Baltic Sea is the largest brackish water area of the world. On the basis of the data from 16 cruises, we show the seasonal and vertical distribution patterns of the appendicularians Fritillaria borealis, Oikopleura dioica and the cyclopoid copepod Oithona similis, in the highly stratified Bornholm Basin. These species live at least temporarily below the permanent halocline and use different life strategies to cope with the brackish environment. The cold-water species F. borealis is abundant in the upper layers of the water column before the thermocline develops. With the formation of the thermocline abundance decreases and the specimens outlast higher temperatures below the halocline. Distribution and strategy suggest that F. borealis might be a glacial relict species in the Baltic Sea. Although Oikopleura dioica is only abundant during summer, O. similis is present all year round. Both species have in common that their vertical distribution is restricted to the waters below the halocline, most likely due to their requirements of higher salinities. We argue that the observed strategies are determined by ecophysiological constraints and life history traits. These species share an omnivorous feeding behaviour and the capability to utilise a spectra of small particles as food. As phytoplankton concentration is negligible below the halocline, we suggest that these species feed on organic material and heterotrophic organisms that accumulate in the density gradient of the halocline. Therefore, the deep haline waters in the Baltic Sea represent a habitat providing shelter from predation and food supply for adapted species that allows them to gather sufficient resources and to maintain populations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Arctic sea-ice decline is expected to have a significant impact on Arctic marine ecosystems. Ice-associated fauna play a key role in this context because they constitute a unique part of Arctic biodiversity and transmit carbon from sea-ice algae into pelagic and benthic food webs. Our study presents the first regional-scale record of under-ice faunal distribution and the environmental characteristics of under-ice habitats throughout the Eurasian Basin. Sampling was conducted with a Surface and Under-Ice Trawl, equipped with a sensor array recording ice thickness and other physical parameters during trawling. We identified 2 environmental regimes, broadly coherent with the Nansen and Amundsen Basins. The Nansen Basin regime was distinguished from the Amundsen Basin regime by heavier sea-ice conditions, higher surface salinities and higher nitrate + nitrite concentrations. We found a diverse (28 species) under-ice community throughout the Eurasian Basin. Change in community structure reflected differences in the relative contribution of abundant species. Copepods (Calanus hyperboreus and C. glacialis) dominated in the Nansen Basin regime. In the Amundsen Basin regime, amphipods (Apherusa glacialis, Themisto libellula) dominated. Polar cod Boreogadus saida was present throughout the sampling area. Abrupt changes from a dominance of ice-associated amphipods at ice-covered stations to a dominance of pelagic amphipods (T. libellula) at nearby ice-free stations emphasised the decisive influence of sea ice on small-scale patterns in the surface-layer community. The observed response in community composition to different environmental regimes indicates potential long-term alterations in Arctic marine ecosystems as the Arctic Ocean continues to change.