230 resultados para BENTHIC COMMUNITIES
Resumo:
A mesocosm experiment was conducted to quantify the effects of reduced pH and elevated temperature on an intact marine invertebrate community. Standardised faunal communities, collected from the extreme low intertidal zone using artificial substrate units, were exposed to one of eight nominal treatments (four pH levels: 8.0, 7.7, 7.3 and 6.7, crossed with two temperature levels: 12 and 16°C). After 60 days exposure communities showed significant changes in structure and lower diversity in response to reduced pH. The response to temperature was more complex. At higher pH levels (8.0 and 7.7) elevated temperature treatments contained higher species abundances and diversity than the lower temperature treatments. In contrast, at lower pH levels (7.3 and 6.7), elevated temperature treatments had lower species abundances and diversity than lower temperature treatments. The species losses responsible for these changes in community structure and diversity were not randomly distributed across the different phyla examined. Molluscs showed the greatest reduction in abundance and diversity in response to low pH and elevated temperature, whilst annelid abundance and diversity was mostly unaffected by low pH and was higher at the elevated temperature. The arthropod response was between these two extremes with moderately reduced abundance and diversity at low pH and elevated temperature. Nematode abundance increased in response to low pH and elevated temperature, probably due to the reduction of ecological constraints, such as predation and competition, caused by a decrease in macrofaunal abundance. This community-based mesocosm study supports previous suggestions, based on observations of direct physiological impacts, that ocean acidification induced changes in marine biodiversity will be driven by differential vulnerability within and between different taxonomical groups. This study also illustrates the importance of considering indirect effects that occur within multispecies assemblages when attempting to predict the consequences of ocean acidification and global warming on marine communities.
Resumo:
The effect of elevated pCO2/low pH on marine invertebrate benthic biodiversity, community structure and selected functional responses which underpin ecosystem services (such as community production and calcification) was tested in a medium-term (30 days) mesocosm experiment in June 2010. Standardised intertidal macrobenthic communities, collected (50.3567°N, 4.1277°W) using artificial substrate units (ASUs), were exposed to one of seven pH treatments (8.05, 7.8. 7.6, 7.4, 7.2, 6.8 and 6.0). Community net calcification/dissolution rates, as well as changes in biomass, community structure and diversity, were measured at the end of the experimental period. Communities showed significant changes in structure and reduced diversity in response to reduced pH: shifting from a community dominated by calcareous organisms to one dominated by non-calcareous organisms around either pH 7.2 (number of individuals and species) or pH 7.8 (biomass). These results were supported by a reduced total weight of CaCO3 structures in all major taxa at lowered pH and a switch from net calcification to net dissolution around pH 7.4 (Omega calc = 0.78, Omega ara = 0.5). Overall community soft tissue biomass did not change with pH and high mortality was observed only at pH 6.0, although molluscs and arthropods showed significant decreases in soft tissue. This study supports and refines previous findings on how elevated pCO2 can induce changes in marine biodiversity, underlined by differential vulnerability of different phyla. In addition, it shows significant elevated pCO2-/low pH-dependent changes in fundamental community functional responses underpinning changes in ecosystem services.
Resumo:
The distribution of seagrass and associated benthic communities on the reef and lagoon of Low Isles, Great Barrier Reef, was mapped between the 29 July and 29 August 1997. For this survey, observers walked or free-dived at survey points positioned approximately 50 m apart along a series of transects. Visual estimates of above-ground seagrass biomass and % cover of each benthos and substrate type were recorded at each survey point. A differential handheld global positioning system (GPS) was used to locate each survey point (accuracy ±3m). A total of 349 benthic survey points were examined. To assist with mapping meadow/habitat type boundaries, an additional 177 field points were assessed and a georeferenced 1:12,000 aerial photograph (26th August 1997) was used as a secondary source of information. Bathymetric data (elevation below Mean Sea Level) measured at each point assessed and from Ellison (1997) supplemented information used to determine boundaries, particularly in the subtidal lagoon. 127.8 ±29.6 hectares was mapped. Seagrass and associated benthic community data was derived by haphazardly placing 3 quadrats (0.25m**2) at each survey point. Seagrass above ground biomass (standing crop, grams dry weight (g DW m**-2)) was determined within each quadrat using a non-destructive visual estimates of biomass technique and the seagrass species present identified. In addition, the cover of all benthos was measured within each of the 3 quadrats using a systematic 5 point method. For each quadrat, frequency of occurrence for each benthic category was converted to a percentage of the total number of points (5 per quadrat). Data are presented as the average of the 3 quadrats at each point. Polygons of discrete seagrass meadow/habitat type boundaries were created using the on-screen digitising functions of ArcGIS (ESRI Inc.), differentiated on the basis of colour, texture, and the geomorphic and geographical context. The resulting seagrass and benthic cover data of each survey point and for each seagrass meadow/habitat type was linked to GPS coordinates, saved as an ArcMap point and polygon shapefile, respectively, and projected to Universal Transverse Mercator WGS84 Zone 55 South.
Resumo:
Within the last decade, several early Eocene hyperthermals have been detected globally. These transient warming events have mainly been characterized geochemically - using stable isotopes, carbonate content measurements or XRF core scanning - yet detailed micropaleontological records are sparse, limiting our understanding of the driving forces behind hyperthermals and of the contemporaneous paleoceanography. Here, detailed geochemical and quantitative benthic foraminiferal records are presented from lower Eocene pelagic sediments of Deep Sea Drilling Project Site 401 (Bay of Biscay, northeast Atlantic). In calcareous nannofossil zone NP11, several clay-enriched levels correspond to negative d13C and d18O bulk-rock excursions with amplitudes of up to ~0.75 per mil, suggesting that significant injections of 12C-enriched greenhouse gasses and small temperature rises took place. Coeval with several of these hyperthermal events, the benthic foraminiferal record reveals increased relative abundances of oligotrophic taxa (e.g. Nuttallides umbonifera) and a reduction in the abundance of buliminid species followed by an increase of opportunistic taxa (e.g. Globocassidulina subglobosa and Gyroidinoides spp.). These short-lived faunal perturbations are thought to be caused by reduced seasonality of productivity resulting in a decreased Corg flux to the seafloor. Moreover, the sedimentological record suggests that an enhanced influx of terrigenous material occurred during these events. Additionally, the most intense d13C decline (here called level d) gives rise to a small, yet pronounced long-term shift in the benthic foraminiferal composition at this site, possibly due to the reappraisal of upwelling and the intensification of bottom water currents. These observations imply that environmental changes during (smaller) hyperthermal events are also reflected in the composition of deep-sea benthic communities on both short (<100 kyr) and longer time scales. We conclude that the faunal patterns of the hyperthermals observed at Site 401 strongly resemble those observed in other deep-sea early Paleogene hyperthermal deposits, suggesting that similar processes have driven them.
Resumo:
Ocean acidification threatens the survival of coral reef ecosystems worldwide. The negative effects of ocean acidification observed in many laboratory experiments have been seen in studies of naturally low-pH reefs, with little evidence to date for adaptation. Recently, we reported initial data suggesting that low-pH coral communities of the Palau Rock Islands appear healthy despite the extreme conditions in which they live. Here, we build on that observation with a comprehensive statistical analysis of benthic communities across Palau's natural acidification gradient. Our analysis revealed a shift in coral community composition but no impact of acidification on coral richness, coralline algae abundance, macroalgae cover, coral calcification, or skeletal density. However, coral bioerosion increased 11-fold as pH decreased from the barrier reefs to the Rock Island bays. Indeed, a comparison of the naturally low-pH coral reef systems studied so far revealed increased bioerosion to be the only consistent feature among them, as responses varied across other indices of ecosystem health. Our results imply that whereas community responses may vary, escalation of coral reef bioerosion and acceleration of a shift from net accreting to net eroding reef structures will likely be a global signature of ocean acidification.