23 resultados para ABA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Total organic carbon (TOC), dissolved organic carbon (DOC), total hydrolyzable amino acids (THAA), amino sugars (THAS), and carbohydrates (THCHO) were measured in sediments and interstitial waters from Site 681 (ODP Leg 112). TOC concentrations vary between 0.75% and 8.2% by weight of dry sediment and exhibit a general decrease with depth. DOC concentrations range from 6.1 to 49.5 mg/L, but do not correlate with TOC concentrations in the sediment. Amino compounds (AA and AS) and sugars account for 0.5% to 8% and 0.5% to 3% of TOC, respectively, while amino compounds make up between 2% and 27% of total nitrogen. Dissolved hydrolyzable amino acids (free and combined) and amino sugars were found in concentrations from 3.7 to 150 µM and from 0.1 to 3.7 µM, respectively, and together account for an average of 8.5% of DOC. Dissolved hydrolyzable carbohydrates are in the range of 6 to 49 µM. Amino acid spectra are dominated by glycine, alanine, leucine, and phenylalanine; nonproteinaceous amino acids (gamma-amino butyric acid, beta-alanine, and ornithine) are enriched in the deeper part of the section, gamma-amino butyric acid and beta-alanine are thought to be indicators of continued microbial degradation of TOC. Glycine, serine, glutamic acid, alanine, aspartic acid, and ornithine are the dominating amino compounds in the pore waters. Spectra of carbohydrates in sediments are dominated by glucose, galactose, and mannose, while dissolved sugars are dominated by glucose and fructose. In contrast to the lack of correlation between abundances of bulk TOC and DOC in corresponding interstitial waters, amino compounds and sugars do show some correlation between sediments and pore waters: A depth increase of aspartic acid, serine, glycine, and glutamic acid in the pore waters is reflected in a decrease in the sediment, while an enrichment in valine, iso-leucine, leucine, and phenylalanine in the sediment is mirrored by a decrease in the interstitial waters. The distribution of individual hexoseamines appears to be related to zones of bacterial decomposition of organic matter. Low glucoseamine to galactoseamine ratios coincide with zones of sulfate depletion in the interstitial waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sedimentary d15N records are valuable archives of ocean history but they are often modified during early diagenesis. Here we quantify the effect of early diagenetic enrichment on sedimentary N-isotope composition in order to obtain the pristine signal of reactive N assimilated in the euphotic zone. This is possible by using paired data of d15N and amino acid composition of sediment samples, which can be applied to estimate the degree of organic matter degradation. We determined d15N and amino acid composition in coeval sediments from Ocean Drilling Program (ODP) Hole 772 B in the central Arabian Sea and from Hole 724 C situated on the Oman Margin in the western Arabian Sea coastal upwelling area. The records span the last 130 kyr and include two glacial-interglacial cycles. These new data are used in conjunction with data available for surface sediments that cover a wide range of organic matter degradation states, and with other cores from the northern and eastern Arabian Sea to explore spatial variations in the isotopic signal. In order to reconstruct pristine N values we apply the relationship between organic matter degradation and 15N enrichment in surface sediments to correct the core records for early diagenetic enrichment. Reconstructed d15N values suggest a significant role of N2-fixation during glacial stages. An evaluation of two preservation indices based on amino acid composition (Reactivity Index, RI; Jennerjahn and Ittekkot, 1997; and the Degradation Index, DI; Dauwe et al., 1999) in both recent sediments and core samples suggests that the RI is more suitable than the DI in correcting Arabian Sea d15N records for early diagenetic enrichment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Site 695 lies on the southeast margin of the South Orkney microcontinent on the northern margin of the Weddell Sea, at 62°23.48'S, 43°27.10'W in 1305 m water depth. The inorganic properties of interstitial waters at this site, including sulfate reduction, biogenic methane production, and high concentrations of ammonia and phosphate, imply high microbial activity. However, no clear relationship between amino acid composition and concentration and the type of microbial activity (e.g., sulfate reduction or methane production) can be identified. The THAA (total hydrolyzable amino acids) values range between 2.45 and 17.31 µmol/L, averaging 7.14 µmol/L. The mean concentrations and relative abundance values of acidic, basic, neutral, aromatic, and sulfur-containing amino acids are 1.34 (18%), 1.09 (15%), 3.93 (54%), 0.50 (8%), and 0.02 (0%) µmol/L, respectively. Glycine is the most abundant amino acid residue, with serine, glutamic acid, and ornithine next. The DFAA (dissolved free amino acids) values range from 0.10 to 12.73 µmol/L, averaging 4.07 µmol/L. The acidic, basic, neutral, aromatic, and sulfurcontaining amino acids are on average 0.21, 0.79, 2.56, 0.41, and 0.01 µmol/L, respectively. The relative abundances of acidic, basic, neutral, and aromatic amino acids average 4%, 18%, 58%, and 15%, respectively. Predominance of DFAA over DCAA (dissolved combined amino acids) in interstitial waters of Lithologic Units I and II is contrary to the predominance of DCAA over DFAA in other interstitial waters and seawater. The comparison of amino acid compositions between DCAA and siliceous plankton suggests that the DCAA in interstitial waters originally comes from amino acids derived from siliceous plankton. However, other sources which are much enriched in glutamic acid contribute to the DCAA composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The basement at Ocean Drilling Program (ODP) Sites 677 and 678 originated from the Galapagos spreading center of the Costa Rica Rift and has moved about 200 km over the last 6 m.y. (Fig. 1) (Shipboard Scientific Party, 1987, 1988; Scientific Drilling Party, 1987). Sediments about 300 m thick cover basement so young that basal sediments at Sites 677 and 678 have been reheated up to 60?-70?C at Site 677 and altered to limestone and/or chert (Shipboard Scientific Party, 1988). Sediments from both sites indicate (1) a high sedimentation rate (about 48 m/m.y.) and (2) biogenic silica and carbonate as the main constituents of sediments (Table 1) (Shipboard Scientific Party, 1988). Heatflow observations and measurements of interstitial water chemistry around the sites show that Site 677 is in a lower heatflow zone (166 mW/m**2; 1°12.14'N, 83°44.22'W) whereas Site 678 is located in a zone of higher heat flow (250 mW/m**2; 1°13.01'N, 83°43.39'W) (Langseth et al., 1988; Shipboard Scientific Party, 1988). In the flank hydrothermal systems, circulating solution is moving upward through the sedimentary column in zones of higher heat flow while it is moving downward in zones of lower heat flow (Anderson and Skilbeck, 1981). The chemistry of the interstitial waters is modified by several processes such as (1) diagenetic reactions and (2) advective and (3) diffusive transports of dissolved constituents. Analyses of Ca2+ and Mg2+ in interstitial waters from Sites 677 and 678 show that their profiles are mainly controlled by advective transport (Shipboard Scientific Party, 1988). In contrast, the interstitial-water profiles for NH4+, Si, and PO4[3-] are highly affected by reactions in the sediments. Site 677 offers a good opportunity to investigate amino acids in the interstitial waters because sediments of similar compositions have been deposited at constant rates of sedimentation. There are few previous works on amino acid distributions in interstitial waters (Henrichs and Parrington, 1979; Michaelis et al., 1982; Henrichs et al., 1984; Henrichs and Farrington, 1987; Ishizuka et al., 1988). In this chapter, we report (1) Rock-Eval analysis and (2) the composition of total hydrolyzable and dissolved free amino acids (THAA and DFAA, respectively) in the interstitial waters. Our objectives are to discuss (1) the possible origin of organic materials, (2) the characteristics of THAA and DFAA, and (3) their relationships in interstitial waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment and interstitial water from Sites 651 and 653 (ODP Leg 107) were investigated by organic geochemical methods to characterize labile organic compound classes (amino compounds and carbohydrates) and to evaluate their progressive diagenetic and thermal degradation in deep-sea sediments. Downhole distribution of dissolved organic carbon (DOC) appears related to redox zones associated with bacterial activity and of diagenetic recrystallization of biogenic tests and not so much to organic matter concentrations in ambient sediments. DOC ranges from 250 to 8300 µmol/L (3-100.1 ppm). Amino acids contribute 10%-0.3% of DOC; carbohydrates range from 78 to 5 µmol/L. Rate of degradation of amino acids by thermal effects and/or bacterial activity at both sites (significantly different in sedimentation rates: average 41 cm/1000 yr in the top 300 m at Site 651, average 3.9 cm/1000 yr in the Pliocene/Quaternary sequence at Site 653 to 220 mbsf) is more dependent on exposure time rather than on the depth within the sediment column. Variability in neutral, acidic, and basic amino acid fractions of total amino acids (with a range of 1.1-0.02 µmol/g sediment; up to 2.5% of organic carbon) varies with carbonate content and by differences in thermal stability of amino acids. Distribution patterns of monosaccharides are interpreted to result from differences in organic matter sources, sedimentation rates, and the degree of organic matter decomposition prior to and subsequent to burial. Total particulate carbohydrates range from 1.82 to 0.21 µmol/g sediment and contribute about 8% to the sedimentary organic matter. Investigation of trace metals in the interstitial waters did not show any correlation of either DOC, amino compounds, or carbohydrates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of amino acids in the Precambrian shungite rocks of Karelia showed that their contents vary within 25-89 µg/g depending on proportions between shungite and mineral components. It was established that the amino acids exhibit an excess of L-enantiomers. In the shungite rocks, they form organomineral complexes with silica and aluminosilicates, being built in the globular structure of shungite matter. There are several sources of amino acids in shungites: secondary synthesis, microbial pollution, and original amino acids of organic matter in shungite rocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Northern Bay of Bengal (NBoB) is a globally important region for deep-sea organic matter (OM) deposition due to massive fluvial discharge from the Ganges-Brahmaputra-Meghna (G-B-M) rivers and moderate to high surface productivity. Previous studies have focused on carbon burial in turbiditic sediments of the Bengal Fan. However, little is known about the storage of carbon in pelagic and hemipelagic sediments of the Bay of Bengal over millennial time scales. This study presents a comprehensive history of OM origin and fate as well as a quantification of carbon sediment storage in the Eastern Bengal Slope (EBS) during the last 18 ka. Bulk organic proxies (TOC, TIC, TN, d13CTOC, d15NTN) and content and composition of total hydrolysable amino acids (THAA) in a sediment core (SO188-342KL) from the EBS were analyzed. Three periods of high OM accumulation were identified: the Late Glacial (LG), the Bölling/Alleröd (B/A), and the Early Holocene Climatic Optimum (EHCO). Lower eustatic sea level before 15 ka BP allowed a closer connection between the EBS and the fluvial debouch, favoring high terrestrial OM input to the core site. This connection was progressively lost between 15 and 7 ka BP as sea level rose to its present height and terrestrial OM input decreased considerably. Export and preservation of marine OM was stimulated during periods of summer monsoon intensification (B/A and EHCO) as a consequence of higher surface productivity enhanced by cyclonic-eddy nutrient pumping and fluvial nutrient delivery into the photic zone. Changes in the THAA composition indicate that the marine plankton community structure shifted from calcareous-dominated before 13 ka BP to siliceous-dominated afterwards. They also indicate that the relative proportion of marine versus terrestrial OM deposited at site 342KL was primarily driven by relative sea level and enlarged during the Holocene. The ballasting effect of lithogenic particles during periods of high coastal proximity and/or enhanced fluvial discharge promoted the export and preservation of OM. The high organic carbon accumulation rates in the EBS during the LG (18-17 ka BP) were 5-fold higher than at present and comparable to those of glacial upwelling areas. Despite the differences in sediment and OM transport and storage among the Western and Eastern sectors of the NBoB, this region remains important for global carbon sequestration during sea level low-stands. In addition, the summer monsoon was a key promotor of terrestrial and marine OM export to the deep-ocean, highlighting its relevance as regulator of the global carbon budget.