185 resultados para 82.09
Resumo:
Sr and Nd isotopic composition of 23 basalts from Sites 556-559 and 561-564. are reported. The 87Sr/86Sr ratios in fresh glasses and leached whole rocks range from 0.7025 to 0.7034 and are negatively correlated with the initial 143Nd/ 144Nd compositions, which range from 0.51315 to 0.51289. The Sr and Nd isotopic compositions (in glasses or leached samples) lie within the fields of mid-ocean ridge basalts (MORB) and ocean island basalts (OIB) from the Azores on the Nd-Sr mantle array/fan plot. In general, there is a correlation between the trace element characteristics and the 143Nd/144Nd composition (i.e., samples with Hf/Ta>7 and (Ce/Sm)N<1 [normal-MORB] have initial 143Nd/144Nd>0.51307, whereas samples with Hf/Ta<7 and (Ce/Sm)N>1 (enriched-MORB) have initial 143Nd/144Nd compositions <0.51300). A significant deviation from this general rule is found in Hole 558, where the N-MORB can have, within experimental limits, identical isotopic compositions to those found in associated E-MORB. The plume-depleted asthenosphere mixing hypothesis of Schilling (1975), White and Schilling (1978) and Schilling et al. (1977) provides a framework within which the present data can be evaluated. Given the distribution and possible origins of the chemical and isotopic heterogeneity observed in Leg 82 basalts, and some other basalts in the area, it would appear that the Schilling et al. model is not entirely satisfactory. In particular, it can be shown that trace element data may incorrectly estimate the plume component and more localized mantle heterogeneity (both chemical and isotopic) may be important.
Resumo:
The North Atlantic at present is ventilated by overflow of the Denmark Strait, Iceland-Faeroe Ridge, Faeroe Bank Channel, and Wyville-Thompson Ridge. The evolution of Cenozoic abyssal circulation of this region was related to tectonic opening and subsidence of these sills. We used d13C records of the benthic foraminifer Cibicidoides to decipher the timing of tectonically controlled changes in bottom-water circulation in the eastern basins (Biscay and Iberian) of the northern North Atlantic. Records from Site 608 (Kings Trough, northeastern North Atlantic) show that from about 24 to 15 Ma (early to early middle Miocene), d13C values in the Kings Trough area were depleted relative to western North Atlantic values and were more similar to Pacific d13C values. This reflects less ventilation of the Kings Trough region as compared to the well-oxygenated western North Atlantic. Comparison of Oligocene d13C records from Site 119 (Bay of Biscay) with western North Atlantic records suggests that the eastern basin was also relatively isolated prior to 24 Ma. At about 15 Ma, d13C values at Site 608 attained values similar to the western North Atlantic, indicating increased eastern basin ventilation in the middle Miocene. This increased advection into the eastern basin predated a major d18O increase which occurred at about 14.6 Ma. Subsidence estimates of the Greenland-Scotland Ridge indicate that the deepening of the Iceland-Faeroe Ridge was coincident with the marked change in eastern basin deep-water ventilation.
Resumo:
The nine holes (556-564) drilled during DSDP Leg 82 in a region west and southwest of the Azores Platform (Fig. 1) exhibit a wide variety of chemical compositions that indicate a complex petrogenetic history involving crystal fractionation, magma mixing, complex melting, and mantle heterogeneity. The major element chemistry of each hole except Hole 557 is typical of mid-ocean ridge basalts (MORBs), whereas the trace element and rare earth element (REE) abundances and ratios are more variable, and show that both depleted Type I and enriched Type II basalts have been erupted in the region. Hole 556 (30-34 Ma), located near a flow line through the Azores Triple Junction, contains typically depleted basalts, whereas Hole 557 (18 Ma), located near the same flow line but closer to the Azores Platform, is a highly enriched FeTi basalt, indicating that the Azores hot-spot anomaly has existed in its present configuration for at least 18 Ma, but less than 30-34 Ma. Hole 558 (34-37 Ma), located near a flow line through the FAMOUS and Leg 37 sites, includes both Type I and II basalts. Although the differences in Zr/Nb and light REE/heavy REE ratios imply different mantle sources, the (La/Ce)ch (>1) and Nd isotopic ratios are almost the same, suggesting that the complex melting and pervasive, small-scale mantle heterogeneity may account for the variations in trace element and REE ratios observed in Hole 558 (and FAMOUS sites). Farther south, Hole 559 (34-37 Ma), contains enriched Type II basalts, whereas Hole 561 (14-17 Ma), located further east near the same flow line, contains Type I and II basalts. In this case, the (La/Ce)ch and Nd isotopic ratios are different, indicating two distinct mantle sources. Again, the existence along the same flow line of two holes exhibiting such different chemistry suggests that mantle heterogeneity may exist on a more pervasive and transient smaller scale. (Hole 560 was not sampled for this study because the single basalt clast recovered was used for shipboard analysis.) All of the remaining three holes (562, 563, 564), located along a flow line about 100 km south of the Hayes Fracture Zone (33°N), contain only depleted Type I basalts. The contrast in chemical compositions suggests that the Hayes Fracture Zone may act as a "domain" boundary between an area of fairly homogeneous, depleted Type I basalts to the south (Holes 562-564) and a region of complex, highly variable basalts to the north near the Azores hot-spot anomaly (Holes 556-561).