227 resultados para 320-U1334A
Resumo:
The Oligocene-Miocene transition (OMT) (~23 Ma) is interpreted as a transient global cooling event, associated with a large-scale Antarctic ice sheet expansion. Here we present a 2.23 Myr long high-resolution (~3 kyr) benthic foraminiferal oxygen and carbon isotope (d18O and d13C) record from Integrated Ocean Drilling Program Site U1334 (eastern equatorial Pacific Ocean), covering the interval from 21.91 to 24.14 Ma. To date, five other high-resolution benthic foraminiferal stable isotope stratigraphies across this time interval have been published, showing a ~1 per mil increase in benthic foraminiferal d18O across the OMT. However, these records are still few and spatially limited and no clear understanding exists of the global versus local imprints. We show that trends and the amplitudes of change are similar at Site U1334 as in other high-resolution stable isotope records, suggesting that these represent global deep water signals. We create a benthic foraminiferal stable isotope stack across the OMT by combining Site U1334 with records from ODP Sites 926, 929, 1090, 1264, and 1218 to best approximate the global signal. We find that isotopic gradients between sites indicate interbasinal and intrabasinal variabilities in deep water masses and, in particular, note an offset between the equatorial Atlantic and the equatorial Pacific, suggesting that a distinct temperature gradient was present during the OMT between these deep water masses at low latitudes. A convergence in the d18O values between infaunal and epifaunal species occurs between 22.8 and 23.2 Ma, associated with the maximum d18O excursion at the OMT, suggesting climatic changes associated with the OMT had an effect on interspecies offsets of benthic foraminifera. Our data indicate a maximum glacioeustatic sea level change of ~50 m across the OMT.
Resumo:
Integrated Ocean Drilling Program (IODP) Expedition 320 recovered high-quality paleomagnetic records with over 800 dated reversals and decimeter-scale cyclic sediments which provide an outstanding framework to inter-calibrate major fossil groups and refine magnetic polarity chrons for the early Miocene, the entire Oligocene and the late Eocene Epoch. In order to reconstruct the climate history of the Equatorial Pacific one of the major objectives of the Pacific Equatorial Age Transect (PEAT) is the compilation of a Cenozoic Megasplice which integrates all available bio-, chemo-, and magnetostratigraphic data including key records from Ocean Drilling Program (ODP) Leg 199. Here we present extended post-cruise refinements of the shipboard composite depth scales and composite records of IODP Expedition 320 Sites U1331, U1332, U1333, U1334 as well as ODP Leg 199 Sites 1218, 1219 and 1220. The revised composite records were used to perform a site-to-site correlation and integration of Leg 199 and Exp. 320 sites. Based on this decimeter scale correlation a high resolution integrated paleomagnetic and biostratigraphic framework for the Equatorial Pacific is established covering the time from 20 to 40 Ma. This unprecedented sedimentary compendium from the Equatorial Pacific will be the backbone for paleoceanographic reconstructions for the late Paleogene.
Resumo:
We present a high-resolution magnetostratigraphy and relative paleointensity (RPI) record derived from the upper 85 meters of IODP Site U1336, an equatorial Pacific early to middle Miocene succession recovered during Expedition 320/321. The magnetostratigraphy is well resolved with reversals typically located to within a few centimeters resulting in a well-constrained age model. The lowest normal polarity interval, from 85 to 74.87 meters, is interpreted as the upper part of Chron C6n (18.614-19.599 Ma). Another 33 magnetozones occur from 74.87 to 0.85 m, which are interpret to represent the continuous sequence of chrons from Chron C5Er (18.431-18.614 Ma) up to the top of Chron C5An.1n (12.014 Ma). We identify three new possible subchrons within Chron C5Cn.1n, Chron 5Bn.1r, and C5ABn. Sedimentation rates vary from about 7 to 15 m/Myr with a mean of about 10 m/Myr. We observe rapid, apparent changes in the sedimentation rate at geomagnetic reversals between ~16 and 19 Ma that indicate a calibration error in geomagnetic polarity timescale (ATNTS2004). The remanence is carried mainly by non-interacting particles of fine-grained magnetite, which have FORC distributions characteristic of biogenic magnetite. Given the relative homogeneity of the remanence carriers throughout the 85-m-thick succession and the quality with which the remanence is recorded, we have constructed a relative paleointensity (RPI) record that provides new insights into middle Miocene geomagnetic field behavior. The RPI record indicates a gradual decline in field strength between 18.5 Ma and 14.5 Ma, and indicates no discernible link between RPI and either chron duration or polarity state.