923 resultados para 167-1017C


Relevância:

20.00% 20.00%

Publicador:

Resumo:

New paleomagnetic and paleontologic data from Pacific DSDP Sites 463 and 167 define the magnetic reversals that predate the Cretaceous Normal Polarity Superchron (K-N). Data from Mid-Pacific Mountain Site 463 provide the first definition of polarity chron M0 in the Pacific deep-sea sedimentary record. Foraminiferal biostratigraphy suggests that polarity chron M0 is contained entirely within the lower Aptian Hedbergella similis Zone, in agreement with foraminiferal data from the Italian Southern Alps and Atlantic Ocean. Nannofossil assemblages also suggest an early Aptian age for polarity chron M0, contrary to results from the Italian Umbrian Apennines and Southern Alps, which place polarity chron M0 on the Barremian-Aptian boundary. Biostratigraphic dating discrepancies caused by the time-transgressive, preservational, or provincial nature of paleontological species might be reconciled by the use of magnetostratigraphy, specifically polarity chron M0 which lies close to the Barremian-Aptian boundary. At Magellan Rise Site 167, five reversed polarity zones are recorded in Hauterivian to Aptian sediments. Correlation with M-anomalies is complicated by synsedimentary and postsedimentary sliding about 25 m.y. after basement formation, producing gaps in, and duplications of, the stratigraphic sequence. The magnitude and timing of such sliding must be addressed when evaluating the stratigraphy of these oceanic-rise environments.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the expected scientific results of Ocean Drilling Program Leg 167 was to reconstruct the Neogene history of biogenic calcium carbonate accumulation in the northeastern Pacific along the California margin (Lyle, Koizumi, Richter, et al., 1997). This aims to constrain inorganic carbon burial rates, deep-water hydrography in the North Pacific, and linkages between deep Atlantic and Pacific circulation and carbonate accumulation or dissolution patterns. Data are presented for four sites. Two of them are located in the California bight-East Cortez Basin (Site 1012: 32°16.970?N 118°23.024?W, 1773 m) and San Nicholas Basin (Site 1013: 32°48.040??, 118°53.992?W, 1564 m). The others are the dedicated Hole 1017E at Site 1017 (34°32.099?N, 121°6.430?W, 955 m) and Site 1019 in the Eel River Basin (41¢X40.972?N, 124°55.975?W, 977 m). Reconstruction of paleo-sea-surface temperatures (SST) by determining the alkenone unsaturation index of the extractable organic matter is an independent technique and helps to verify oxygen-isotope-based estimates. Results from the uppermost 600 cm of the dedicated Hole 1017E are expected to reveal the local temperature history of the last 30 k.y.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The detailed structure and timing of the penultimate deglaciation are insufficiently defined yet critical for understanding mechanisms responsible for abrupt climate change. Here we present oxygen isotope records (from planktonic and benthic foraminifera) at unprecedented resolution encompassing late marine oxygen isotope stage (MIS) 6 and Termination II (ca. 150-120 ka) from the Santa Barbara Basin, supported by additional southern California margin records, a region highly sensitive to millennial-scale climate oscillations during the last deglaciation. These records reveal millennial- and centennial-scale climate variability throughout the interval, including an interstadial immediately preceding the deglaciation, a brief warm event near the beginning of Termination II, and a Bølling-Allerød-Younger Dryas-like climate oscillation midway through the deglaciation. Recognition of these events in an oxygen isotope record from a 230Th-dated stalagmite allows the adoption of this radiometric chronology for the California margin records. This chronology supports the Milankovitch theory of deglaciation. The suborbital history of climate variability during Termination II may account for records of early deglaciation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sediments from five Leg 167 drill sites and three piston cores were analyzed for Corg and CaCO3. Oxygen isotope stratigraphy on benthic foraminifers was used to assign age models to these sedimentary records. We find that the northern and central California margin is characterized by k.y.-scale events that can be found in both the CaCO3 and Corg time series. We show that the CaCO3 events are caused by changes in CaCO3 production by plankton, not by dissolution. We also show that these CaCO3 events occur in marine isotope Stages (MIS) 2, 3, and 4 during Dansgaard/Oeschger interstadials. They occur most strongly, however, on the MIS 5/4 glaciation and MIS 2/1 deglaciation. We believe that the link between the northeastern Pacific Ocean and North Atlantic is primarily transmitted by the atmosphere, not the ocean. Highest CaCO3 production and burial occurs when the surface ocean is somewhat cooler than the modern ocean, and the surface mixed layer is somewhat more stable.

Relevância:

20.00% 20.00%

Publicador: