247 resultados para 153-920D
Resumo:
The opaque mineralogy and the contents and isotope compositions of sulfur in serpentinized peridotites from the MARK (Mid-Atlantic Ridge, Kane Fracture Zone) area were examined to understand the conditions of serpentinization and evaluate this process as a sink for seawater sulfur. The serpentinites contain a sulfur-rich secondary mineral assemblage and have high sulfur contents (up to 1 wt.%) and elevated d34S_sulfide (3.7 to 12.7?). Geochemical reaction modeling indicates that seawater-peridotite interaction at 300 to 400°C alone cannot account for both the high sulfur contents and high d34S_sulfide. These require a multistage reaction with leaching of sulfide from subjacent gabbro during higher temperature (~400°C) reactions with seawater and subsequent deposition of sulfide during serpentinization of peridotite at ~300°C. Serpentinization produces highly reducing conditions and significant amounts of H2 and results in the partial reduction of seawater carbonate to methane. The latter is documented by formation of carbonate veins enriched in 13C (up to 4.5?) at temperatures above 250°C. Although different processes produce variable sulfur isotope effects in other oceanic serpentinites, sulfur is consistently added to abyssal peridotites during serpentinization. Data for serpentinites drilled and dredged from oceanic crust and from ophiolites indicate that oceanic peridotites are a sink for up to 0.4 to 6.0 mln ton seawater S per year. This is comparable to sulfur exchange that occurs in hydrothermal systems in mafic oceanic crust at midocean ridges and on ridge flanks and amounts to 2 to 30% of the riverine sulfate source and sedimentary sulfide sink in the oceans. The high concentrations and modified isotope compositions of sulfur in serpentinites could be important for mantle metasomatism during subduction of crust generated at slow spreading rates.
Resumo:
Abyssal peridotites are normally thought to be residues of melting of the mid-ocean ridge basalt (MORB) source and are presumably a record of processes affecting the upper mantle. Samples from a single section of abyssal peridotite from the Kane Transform area in the Atlantic Ocean were examined for 190Pt-186Os and 187Re-187Os systematics. They have uniform 186Os/188Os ratios with a mean of 0.1198353 +/- 7, identical to the mean of 0.1198340 +/-12 for Os-Ir alloys and chromitites believed to be representative of the upper mantle. While the Pt/Os ratios of the upper mantle may be affected locally by magmatic processes, these data show that the Pt/Os ratio for the bulk upper mantle has not deviated by more than about +/- 30% from a chondritic Pt/Os ratio over 4.5 billion years. These observations are consistent with the addition of a chondritic late veneer after core separation as the primary control on the highly siderophile element budget of the terrestrial upper mantle. The 187Os/188Os of the samples range from 0.12267 to 0.12760 and correlate well with Pt and Pt/Os, but not Re/Os. These relationships may be explained by variable amounts of partial melting with changing D(Re), reflecting in part garnet in the residue, with a model-dependent melting age between about 600 and 1700 Ma. A model where the correlation between Pt/Os and 187Os/188Os results from multiple ancient melting events, in mantle peridotites that were later juxtaposed by convection, is also consistent with these data. This melting event or events are evidently unrelated to recent melting under mid-ocean ridges, because recent melting would have disturbed the relationship between Pt/Os and 187Os/188Os. Instead, this section of abyssal peridotite may be a block of refractory mantle that remained isolated from the convecting portions of the upper mantle for 600 Ma to >1 Ga. Alternatively, Pt and Os may have been sequestered during more recent melting and possibly melt/rock reaction processes, thereby preserving an ancient melting history. If representative of other abyssal peridotites, then the rocks from this suite with subchondritic 187Os/188Os are not simple residues of recent MORB source melting at ridges, but instead have a more complex history. This suite of variably depleted samples projects to an undepleted present-day Pt/Os of about 2.2 and 187Os/188Os of about 0.128-0.129, consistent with estimates for the primitive upper mantle.
Resumo:
Mineral compositions of residual peridotites collected at various locations in the Mid-Atlantic Ridge south of the Kane transform (MARK area) are consistent with generally smaller degrees of melting in the mantle near the large offset Kane transform than near the other, small offset, axial discontinuities in the area. We propose that this transform fault effect is due to along-axis variations in the final depth of melting in the subaxial mantle, reflecting the colder thermal regime of the ridge near the Kane transform. Calculations made with a passive mantle flow regime suggest that these along-axis variations in the final depth of melting would not produce the full range of crustal thickness variations observed in the MARK area seismic record. It is therefore likely that the transform fault effect in the MARK area is combined with other mechanisms capable of producing crustal thickness variations, such as along-axis melt migration, the trapping of part of the magma in a cold mantle root beneath the ridge, or active mantle upwelling.
Resumo:
Eight DSDP/ODP cores were analyzed for major ion concentrations and d37Cl values of water-soluble chloride (d37Clwsc) and structurally bound chloride (d37Clsbc) in serpentinized ultramafic rocks. This diverse set of cores spans a wide range in age, temperature of serpentinization, tectonic setting, and geographic location of drilled serpentinized oceanic crust. Three of the cores were sampled at closely spaced intervals to investigate downhole variation in Cl concentration and chlorine isotope composition. The average total Cl content of all 86 samples is 0.26±0.16 wt.% (0.19±0.10 wt.% as water-soluble Cl (Xwsc) and 0.09±0.09 wt.% as structurally bound Cl (Xsbc)). Structurally bound Cl concentration nearly doubles with depth in all cores; there is no consistent trend in water-soluble Cl content among the cores. Chlorine isotope fractionation between the structurally bound Cl**- site and the water-soluble Cl**- site varies from -1.08? to +1.16?, averaging to +0.21?. Samples with negative fractionations may be related to reequilibration of the water-soluble chloride with seawater post-serpentinite formation. Six of the cores have positive bulk d37Cl values (+0.05? to +0.36?); the other two cores (173-1068A (Leg-Hole) and 84-570) have negative bulk d37Cl values (-1.26? and -0.54?). The cores with negative d37Cl values also have variable Cl**-/SO4**2- ratios, in contrast to all other cores. The isotopically positive cores (153-920D and 147-895E) show no isotopic variation with depth; the isotopically negative core (173-1068A) decreases by ~1? with depth for both the water-soluble and structurally bound Cl fractions. Non-zero bulk d37Cl values indicate Cl in serpentinites was incorporated during original hydration and is not an artifact of seawater infiltration during drilling. Cores with positive d37Cl values are most likely explained by open system fractionation during hydrothermal alteration, with preferential incorporation of 37Cl from seawater into the serpentinite and loss of residual light Cl back to the ocean. Fluid / rock ratios were probably low as evidenced by the presence of water-soluble salts. The two isotopically negative cores are characterized by a thick overlying sedimentary package that was in place prior to serpentinization. We believe the low d37Cl values of these cores are a result of hydration of ultramafic rock by infiltrating aqueous pore fluids from the overlying sediments. The resulting serpentinites inherit the characteristic negative d37Cl values of the pore waters. Chlorine stable isotopes can be used to identify the source of the serpentinizing fluid and ultimately discern chemical and tectonic processes involved in serpentinization.
Resumo:
The concentrations of the platinum-group elements (PGE) Ir, Ru, Pt and Pd were determined in 11 abyssal peridotites from ODP Sites 895 and 920, as well in six ultramafic rocks from the Horoman peridotite body, Japan, which is generally thought to represent former asthenospheric mantle. Individual oceanic peridotites from ODP drill cores are characterized by variable absolute and relative PGE abundances, but the average PGE concentrations of both ODP suites are very similar. This indicates that the distribution of the noble metals in the mantle is characterized by small-scale heterogeneity and large-scale homogeneity. The mean Ru/Ir and Pt/Ir ratios of all ODP peridotites are within 15% and 3%, respectively, of CI-chondritic values. These results are consistent with models that advocate that a late veneer of chondritic material provided the present PGE budget of the silicate Earth. The data are not reconcilable with the addition of a significant amount of differentiated outer core material to the upper mantle. Furthermore, the results of petrogenetic model calculations indicate that the addition of sulfides derived from percolating magmas may be responsible for the variable and generally suprachondritic Pd/Ir ratios observed in abyssal peridotites. Ultramafic rocks from the Horoman peridotite have PGE signatures distinct from abyssal peridotites: Pt/Ir and Pd/Ir are correlated with lithophile element concentrations such that the most fertile lherzolites are characterized by non-primitive PGE ratios. This indicates that processes more complex than simple in-situ melt extraction are required to produce the geochemical systematics, if the Horoman peridotite formed from asthenospheric mantle with chondritic relative PGE abundances. In this case, the PGE results can be explained by melt depletion accompanied or followed by mixing of depleted residues with sulfides, with or without the addition of basaltic melt.