915 resultados para Biomass, ash free dry mass per volume
Resumo:
Responses by marine species to ocean acidification (OA) have recently been shown to be modulated by external factors including temperature, food supply and salinity. However the role of a fundamental biological parameter relevant to all organisms, that of body size, in governing responses to multiple stressors has been almost entirely overlooked. Recent consensus suggests allometric scaling of metabolism with body size differs between species, the commonly cited 'universal' mass scaling exponent (b) of ¾ representing an average of exponents that naturally vary. One model, the Metabolic-Level Boundaries hypothesis, provides a testable prediction: that b will decrease within species under increasing temperature. However, no previous studies have examined how metabolic scaling may be directly affected by OA. We acclimated a wide body-mass range of three common NE Atlantic echinoderms (the sea star Asterias rubens, the brittlestars Ophiothrix fragilis and Amphiura filiformis) to two levels of pCO2 and three temperatures, and metabolic rates were determined using closed-chamber respirometry. The results show that contrary to some models these echinoderm species possess a notable degree of stability in metabolic scaling under different abiotic conditions; the mass scaling exponent (b) varied in value between species, but not within species under different conditions. Additionally, we found no effect of OA on metabolic rates in any species. These data suggest responses to abiotic stressors are not modulated by body size in these species, as reflected in the stability of the metabolic scaling relationship. Such equivalence in response across ontogenetic size ranges has important implications for the stability of ecological food webs.
Resumo:
This study examined the effects of long-term culture under altered conditions on the Antarctic sea urchin, Sterechinus neumayeri. Sterechinus neumayeri was cultured under the combined environmental stressors of lowered pH (-0.3 and -0.5 pH units) and increased temperature (+2 °C) for 2 years. This time-scale covered two full reproductive cycles in this species and analyses included studies on both adult metabolism and larval development. Adults took at least 6-8 months to acclimate to the altered conditions, but beyond this, there was no detectable effect of temperature or pH. Animals were spawned after 6 and 17 months exposure to altered conditions, with markedly different outcomes. At 6 months, the percentage hatching and larval survival rates were greatest in the animals kept at 0 °C under current pH conditions, whilst those under lowered pH and +2 °C performed significantly less well. After 17 months, performance was not significantly different across treatments, including controls. However, under the altered conditions urchins produced larger eggs compared with control animals. These data show that under long-term culture adult S. neumayeri appear to acclimate their metabolic and reproductive physiology to the combined stressors of altered pH and increased temperature, with relatively little measureable effect. They also emphasize the importance of long-term studies in evaluating effects of altered pH, particularly in slow developing marine species with long gonad maturation times, as the effects of altered conditions cannot be accurately evaluated unless gonads have fully matured under the new conditions.
Resumo:
We investigated the impacts of warming and elevated pCO2 on newly settled Amphibalanus improvisus from Kiel Fjord, an estuarine ecosystem characterized by significant natural pCO2 variability. In two experiments, juvenile barnacles were maintained at two temperature and three pCO2 levels (20/24°C, 700-2.140 µatm) for 8 weeks in a batch culture and at four pCO2 levels (20°C, 620-2.870 µatm) for 12 weeks in a water flow-through system. Warming as well as elevated pCO2 hardly affected growth or the condition index of barnacles, although some factor combinations led to temporal significances in enhanced or reduced growth with an increase in pCO2. While warming increased the shell strength of A. improvisus individuals, elevated pCO2 had only weak effects. We demonstrate a strong tolerance of juvenile A. improvisus to mean acidification levels of about 1,000 µatm pCO2 as is already naturally experienced by the investigated barnacle population.
Resumo:
Variability in metabolic scaling in animals, the relationship between metabolic rate ( R) and body mass ( M), has been a source of debate and controversy for decades. R is proportional to Mb, the precise value of b much debated, but historically considered equal in all organisms. Recent metabolic theory, however, predicts b to vary among species with ecology and metabolic level, and may also vary within species under different abiotic conditions. Under climate change, most species will experience increased temperatures, and marine organisms will experience the additional stressor of decreased seawater pH ('ocean acidification'). Responses to these environmental changes are modulated by myriad species-specific factors. Body-size is a fundamental biological parameter, but its modulating role is relatively unexplored. Here, we show that changes to metabolic scaling reveal asymmetric responses to stressors across body-size ranges; b is systematically decreased under increasing temperature in three grazing molluscs, indicating smaller individuals were more responsive to warming. Larger individuals were, however, more responsive to reduced seawater pH in low temperatures. These alterations to the allometry of metabolism highlight abiotic control of metabolic scaling, and indicate that responses to climate warming and ocean acidification may be modulated by body-size.
Resumo:
Body-size and temperature are the major factors explaining metabolic rate, and the additional factor of pH is a major driver at the biochemical level. These three factors have frequently been found to interact, complicating the formulation of broad models predicting metabolic rates and hence ecological functioning. In this first study of the effects of warming and ocean acidification, and their potential interaction, on metabolic rate across a broad body-size range (two-to-three orders of magnitude difference in body mass) we addressed the impact of climate change on the sea urchin Heliocidaris erythrogramma in context with climate projections for east Australia, an ocean warming hotspot. Urchins were gradually introduced to two temperatures (18 and 23 °C) and two pH (7.5 and 8.0), and maintained for two months. That a new physiological steady-state had been reached, otherwise know as acclimation, was validated through identical experimental trials separated by several weeks. The relationship between body-size, temperature and acidification on the metabolic rate of H. erythrogramma was strikingly stable. Both stressors caused increases in metabolic rate; 20% for temperature and 19% for pH. Combined effects were additive; a 44% increase in metabolism. Body-size had a highly stable relationship with metabolic rate regardless of temperature or pH. None of these diverse drivers of metabolism interacted or modulated the effects of the others, highlighting the partitioned nature of how each influences metabolic rate, and the importance of achieving a full acclimation state. Despite these increases in energetic demand there was very limited capacity for compensatory modulating of feeding rate; food consumption increased only in the very smallest specimens, and only in response to temperature, and not pH. Our data show that warming, acidification and body-size all substantially affect metabolism and are highly consistent and partitioned in their effects, and for H. erythrogramma near-future climate change will incur a substantial energetic cost.
Resumo:
The West Antarctic Peninsula is one of the fastest warming regions on the planet. Faster glacier retreat and related calving events lead to more frequent iceberg scouring, fresh water input and higher sediment loads which may affect benthic marine communities. On the other hand, the appearance of newly formed ice-free areas provides new substrates for colonization. Here we investigated the effect of these conditions on four benthic size classes (microbenthos, meiofauna and macrofauna) using Potter Cove (King George Island, West Antarctic Peninsula) as a case study. We identified three sites within the cove experiencing different levels of glacier retreat-related disturbance. Our results showed the existence of different communities at the same depth over a relatively small distance (about 1 km**2). This suggests glacial activity structures biotic communities over a relatively small spatial scale. In areas with frequent ice scouring and higher sediment accumulation rates, a patchy community, mainly dominated by macrobenthic scavengers (such as Barrukia cristata), vagile organisms, and younger individuals of sessile species (such as Yoldia eigthsi) was found. Meiofauna organisms such as cumaceans are found to be resistant to re-suspension and high sedimentation loads. The nematode genus Microlaimus was found to be successful in the newly exposed ice-free site, confirming its ability as a pioneering colonizer. In general, the different biological size classes appear to respond in different ways to the ongoing disturbances, suggesting that adaptation processes may be size related. Our results suggest that with continued deglaciation, more diverse but less patchy macrobenthic assemblages can become established due to less frequent ice scouring events.
Resumo:
A general study of structure, biomass, and dynamic estimates on meiofauna was carried out during PREFLEX (1975) and FLEX (1976), in 117- 141 m water depth. On the basis of these data an attempt was made to estimate meiofauna production, and this is discussed in relation to the energy input from the spring phytoplankton bloom. Sampling was performed at five stations, but only the stations 1, 4, and 5 were covered by a complete series from August 1975 to July 1976. At each station, from four replicate box core samples, two were withdrawn to study the abundance, distribution, and biomass of meiofauna, the content of chloroplastic pigment equivalents (CPE), and chemical and grain size analyses. At all stations grain size fell in the range of fine sand having median diameters (MD) of < 125 µm. From station 1 to 5 an increase in MD was observed. Highest values of CPE (7.81 µg m l**-1) and organic matter (4.7 %) were obtained in June and July (1976)/ August (1975), respectively. Meiofauna abundance was fairly uniform at all stations examined. Station 1 displayed maximal numbers during the whole investigation period. The abundance per 100 cm**2 varied between 15,550 and 34,900 organisms. All meiofauna studied both in total and as separate taxa showed annual cycles of abundance. Low abundance values were recorded during early summer, and maximum values during winter. High numbers of Foraminifera were obtained for August 1975 (9,460 per 100 cm**2) and July 1976 (9,710 per 100 cm**2). From December to June the values decreased from 3,280 to 1,030 per 100 cm**2. At station 1 maximum values of meiofauna biomass were recorded ranging from 1.5 to 2.7 g DWT m**-2. The mean meiofauna dry weight amounted to 2.1 g DWT m**-2. Based on minimum production, the P/B ratio for the area of station 1 might have a mean of 1.4. Taking into consideration generation times we believe that a turnover ratio of 2 is a conservative value for the Fladen Ground meiofauna. The annual production would amount to 4.2 g DWT m**-2 yr**-1. This is 27.5 % of the energy supply during the spring phytoplankton bloom, which is channelled into the meiofauna. The hypothesis is put forward that the energetic strategy of deep offshore meiofauna differs distinctively from that of shallow inshore meiofauna. While the shallow inshore meiofauna show a relatively fast response to organic matter input, the deep offshore meiofauna reacts much more slowly, the food energy consumption seems to be spread out over a longer period.
Resumo:
At stations to 1530 m depth in the Mozambique Channel and on the Saya-de-Malha and Walters banks seston biomass 2 m above the bottom was lower than at 30 m. Above the Walters shoal this difference was 13.2 mg/m**3 and was not equal to zero for P < 0.001. These results contradict previous ideas of biomass increase in benthic layers. The most likely cause of the observed impoverishment of plankton may be predominant consumption of living zooplankton component of seston by bottom and near-bottom predators. In the area of the Walters shoal this consumption is estimated as being about 300 mg/m**2 per day. Animals inhabiting this area live mainly on plankton brought in by horizontal advection, so that existence of faunal assemblages even on shallow-water submarine elevations is supported not mainly by local photosynthesis, but by primary production of surrounding waters.