316 resultados para 111-2


Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The basement at Ocean Drilling Program (ODP) Sites 677 and 678 originated from the Galapagos spreading center of the Costa Rica Rift and has moved about 200 km over the last 6 m.y. (Fig. 1) (Shipboard Scientific Party, 1987, 1988; Scientific Drilling Party, 1987). Sediments about 300 m thick cover basement so young that basal sediments at Sites 677 and 678 have been reheated up to 60?-70?C at Site 677 and altered to limestone and/or chert (Shipboard Scientific Party, 1988). Sediments from both sites indicate (1) a high sedimentation rate (about 48 m/m.y.) and (2) biogenic silica and carbonate as the main constituents of sediments (Table 1) (Shipboard Scientific Party, 1988). Heatflow observations and measurements of interstitial water chemistry around the sites show that Site 677 is in a lower heatflow zone (166 mW/m**2; 1°12.14'N, 83°44.22'W) whereas Site 678 is located in a zone of higher heat flow (250 mW/m**2; 1°13.01'N, 83°43.39'W) (Langseth et al., 1988; Shipboard Scientific Party, 1988). In the flank hydrothermal systems, circulating solution is moving upward through the sedimentary column in zones of higher heat flow while it is moving downward in zones of lower heat flow (Anderson and Skilbeck, 1981). The chemistry of the interstitial waters is modified by several processes such as (1) diagenetic reactions and (2) advective and (3) diffusive transports of dissolved constituents. Analyses of Ca2+ and Mg2+ in interstitial waters from Sites 677 and 678 show that their profiles are mainly controlled by advective transport (Shipboard Scientific Party, 1988). In contrast, the interstitial-water profiles for NH4+, Si, and PO4[3-] are highly affected by reactions in the sediments. Site 677 offers a good opportunity to investigate amino acids in the interstitial waters because sediments of similar compositions have been deposited at constant rates of sedimentation. There are few previous works on amino acid distributions in interstitial waters (Henrichs and Parrington, 1979; Michaelis et al., 1982; Henrichs et al., 1984; Henrichs and Farrington, 1987; Ishizuka et al., 1988). In this chapter, we report (1) Rock-Eval analysis and (2) the composition of total hydrolyzable and dissolved free amino acids (THAA and DFAA, respectively) in the interstitial waters. Our objectives are to discuss (1) the possible origin of organic materials, (2) the characteristics of THAA and DFAA, and (3) their relationships in interstitial waters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Surface currents and sediment distribution of the SE South American upper continental margin are under influence of the South American Monsoon System (SAMS) and the Southern Westerly Wind Belt (SWWB). Both climatic systems determine the meridional position of the Subtropical Shelf Front (STSF) and probably also of the Brazil-Malvinas Confluence (BMC). We reconstruct the changing impact of the SAMS and the SWWB on sediment composition at the upper Rio Grande Cone off southern Brazil during the last 14 cal kyr combining sedimentological, geochemical, micropaleontological and rock magnetic proxies of marine sediment core GeoB 6211-2. Sharp reciprocal changes in ferri- and paramagnetic mineral content and prominent grain-size shifts give strong clues to systematic source changes and transport modes of these mostly terrigenous sediments. Our interpretations support the assumption that the SAMS over SE South America was weaker than today during most of the Late Glacial and entire Early Holocene, while the SWWB was contracted to more southern latitudes, resembling modern austral summer-like conditions. In consequence, the STSF and the BMC were driven to more southern positions than today's, favoring the deposition of Fe-rich but weakly magnetic La Plata River silts at the Rio Grande Cone. During the Mid Holocene, the northern boundary of the SWWB migrated northward, while the STSF reached its northernmost position of the last 14 cal kyr and the BMC most likely arrived at its modern position. This shift enabled the transport of Antarctic diatoms and more strongly magnetic Argentinean shelf sands to the Rio Grande Cone, while sediment contributions from the La Plata River became less important. During the Late Holocene, the modern El Niño Southern Oscillation set in and the SAMS and the austral tradewinds intensified, causing a southward shift of the STSF to its modern position. This reinforced a significant deposition of La Plata River silts at the Rio Grande Cone. These higher magnetic silts with intermediate Fe contents mirror the modern more humid terrestrial climatic conditions over SE South America.

Relevância:

30.00% 30.00%

Publicador: