870 resultados para Deep-sea Fish
Resumo:
In the Arabian Sea, productivity in the surface waters and particle flux to the deep sea are controlled by monsoonal winds. The flux maxima during the South-West (June-September) and the North-East Monsoon (December-March) are some of the highest particle fluxes recorded with deep-sea sediment traps in the open ocean. Benthic microbial biomass and activities in surface sediments were measured for the first time in March 1995 subsequent to the NE-monsoon and in October 1995 subsequent to the SW-monsoon. These measurements were repeated in April/May 1997 and February/March 1998, at a total of six stations from 1920 to 4420 m water depth. This paper presents a summary on the regional and temporal variability of microbial biomass, production, enzyme activity, degradation of 14C-labeled Synechococcus material as well as sulfate reduction in the northern, western, eastern, central and southern Arabian deep sea. We found a substantial regional variation in microbial biomass and activity, with highest values in the western Arabian Sea (station WAST), decreasing approximately threefold to the south (station SAST). Benthic microbial biomass and activity during the NE-monsoon was as high or higher than subsequent to the SW-monsoon, indicating a very rapid turnover of POC in the surface sediments. This variation in the biomass and activity of the microbial assemblages in the Arabian deep sea can largely be explained by the regional and temporal variation in POC flux. Compared to other abyssal regions, the substantially higher benthic microbial biomasses and activities in the Arabian Sea reflect the extremely high productivity of this tropical basin.
Resumo:
Eight different sites from 2300 to 4420 m water depth in the Arabian Sea were sampled for a biochemical quantification of phospholipid concentrations in the sediments. This method serves as a measure of microbial biomass in marine sediments comprising all small-sized organisms, including bacteria, fungi, protozoa and metazoa. Phospholipid concentrations can be converted to carbon units as an estimate of total microbial biomass in the sediments. The average phospholipid concentrations in the surface sediments (0-1 cm) of the 4 abyssal sites ranged from 7 nmol cm?3 at the southern site (SAST, 10°N 65°E, 4425 m) to 29 nmol/cm**3 at the western site (WAST, 16°N 60°E, 4045 m). The high values detected at the abyssal station WAST exceeded those in the literature for other abyssal sites and were comparable to values from the upper continental slope of the NE-Atlantic and the Arctic. At the four continental slope sites in the Arabian Sea, average phospholipid concentrations ranged from 9 to 53 nmol/cm**3 with the maximum values at stations A (2314 m) and D (3142 m) close to the Omani coast. Records of particulate organic carbon flux to the deep sea are available for four of the investigated locations, allowing a test of the hypothesis that the standing stock of benthic microorganisms in the deep sea is controlled by substrate availability, i.e. particle sedimentation. Total microbial biomass in the surface sediments of the Arabian Sea was positively correlated with sedimentation rates, consistent with previous studies of other oceans. The use of the measurement of phospholipid concentrations as a proxy for input of particulate organic matter is discussed.
Resumo:
A baited imaging lander was deployed six times in the Nazare Canyon at depths from 909 to 4361 m during August 2005 to investigate the demersal scavenging fishes. Species observed and lander-derived abundance estimates were similar to previous data from the Porcupine Seabight and abyssal plain, north-east Atlantic Ocean.
Resumo:
Strontium isotopic compositions of ichthyoliths (microscopic fish remains) in deep-sea clays recovered from the North Pacific Ocean (ODP holes 885A, 886B, and 886C) are used to provide stratigraphic age control within these otherwise undatable sediments. Age control within the deep-sea clays is crucial for determining changes in sedimentation rates, and for calculating fluxes of chemical and mineral components to the sediments. The Sr isotopic ages are in excellent agreement with independent age datums from above (diatom ooze), below (basalt basement) and within (Cretaceous-Tertiary boundary) the clay deposit. The 87Sr/86Sr ratios of fish teeth from the top of the pelagic clay unit (0.7089891), indicate an Late Miocene age (5.8 Ma), as do radiolarian and diatom biostratigraphic ages in the overlying diatom ooze. The 87Sr/86Sr ratio (0.707887) is consistent with a Cretaceous-Tertiary boundary age, as identified by anomalously high iridium, shocked quartz, and sperules in Hole 886C. The 87Sr/86Sr ratios of pretreated fish teeth from the base of the clay unit are similar to Late Cretaceous seawater (0.707779-0.7075191), consistent with radiometric ages from the underlying basalt of 81 Ma. Calculation of sedimentation rates based on Sr isotopic ages from Hole 886C indicate an average sedimentation rate of 17.7 m/Myr in Unit II (diatom ooze), 0.55 m/Myr in Unit IIIa (pelagic clay), and 0.68 m/Myr in Unit IIIb (distal hydrothermal precipitates). The Sr isotopic ages indicate a period of greatly reduced sedimentation (or possible hiatus) between about 35 and 65 Ma (Eocene-Paleocene), with a linear sedimentation rate of only 0.04 m/Myr The calculated sedimentation rates are generally inversely proportional to cobalt accumulation rates and ichthyolith abundances. However, discrepancies between Sr isotope ages and cobalt accumulation ages of l0-15 Myr are evident, particularly in the middle of the clay unit IIIa (Oligocene-Paleocene).
Resumo:
Strontium and neodymium isotopic data are reported for barite samples chemically separated from Late Miocene to Pliocene sediments from the eastern equatorial Pacific. At a site within a region of very high productivity close to the equator, 87Sr/86Sr ratios in the barite separates are indistinguishable from those of foraminifera and fish teeth from the same samples. However, at two sites north of the productivity maximum barite separates have slightly, but consistently lower (averaging 0.000062) ratios than the coexisting phases, although values still fall within the total range of published values for the contemporaneous seawater strontium isotope curve. We examine possible causes for this offset including recrystallization of the foraminifera, fish teeth or barite, the presence of non-barite contaminants, or incorporation of older, reworked deep-sea barite; the inclusion of a small amount of hydrothermal barite in the sediments seems most consistent with our data, although there are difficulties associated with adequate production and transportation of this phase. Barite is unlikely to replace calcite as a preferred tracer of seawater strontium isotopes in carbonate-rich sediments, but may prove a useful substitute in cases where calcite is rare or strongly affected by diagenesis. In contrast to the case for strontium, neodymium isotopic ratios in the barite separates are far from expected values for contemporary seawater, and appear to be dominated by an (unobserved) eolian component with high neodymium concentration and low 143Nd/144Nd. These results suggest that the true potential of barite as an indicator of paleocean neodymium isotopic ratios and REE patterns will be realized only when a more selective separation procedure is developed.
Resumo:
High-resolution, fish tooth Nd isotopic records for eight Deep Sea Drilling Project and Ocean Drilling Program sites were used to reconstruct the nature of late Paleocene-early Eocene deep-water circulation. The goal of this reconstruction was to test the hypothesis that a change in thermohaline circulation patterns caused the abrupt 4-5°C warming of deep and bottom waters at the Paleocene/Eocene boundary - the Paleocene-Eocene thermal maximum (PETM) event. The combined set of records indicates a deep-water mass common to the North and South Atlantic, Southern and Indian oceans characterized by mean epsilon-Nd values of ~-8.7, and different water masses found in the central Pacific Ocean (epsilon-Nd ~-4.3) and Caribbean Sea (epsilon-Nd ~1.2). The geographic pattern of Nd isotopic values before and during the PETM suggests a Southern Ocean deep-water formation site for deep and bottom waters in the Atlantic and Indian ocean basins. The Nd data do not contain evidence for a change in the composition of deep waters prior to the onset of the PETM. This finding is consistent with the pattern of warming established by recently published stable isotope records, suggesting that deep- and bottom-water warming during the PETM was gradual and the consequence of surface-water warming in regions of downwelling.
Resumo:
During the mid-Pleistocene transition the dominant 41 ka periodicity of glacial cycles transitioned to a quasi-100 ka periodicity for reasons not yet known. This study investigates the potential role of deep ocean hydrography by examining oxygen isotope ratios in benthic foraminifera. Oxygen isotope records from the Atlantic, Pacific and Indian Ocean basins are separated into their ice volume and local temperature/hydrography components using a piece-wise linear transfer function and a temperature calibration. Although our method has certain limitations, the deep ocean hydrography reconstructions show that glacial deep ocean temperatures approached freezing point as the mid-Pleistocene transition progressed. Further analysis suggests that water mass reorganisation could have been responsible for these temperature changes, leading to such stable conditions in the deep ocean that some obliquity cycles were skipped until precessional forcing triggered deglaciation, creating the apparent quasi-100 ka pattern. This study supports previous work that suggests multiples of obliquity cycles dominate the quasi-100 ka glacial cycles with precession components driving deglaciations.