267 resultados para 937
Resumo:
Leg 115 of the Ocean Drilling Program recovered basalts from four locations along the hotspot track that leads from the Deccan flood basalts in India to Reunion Island in the western Indian Ocean (Sites 706, 707, 713, and 715). The drilled basalts range in age from 35 Ma (Site 706) to 64 Ma (Site 707), and including the Deccan basalts (66 to 68 Ma), Mauritius Island (0.2 to 8 Ma), and Reunion Island (0 to 2 Ma), seven sites are provided for sampling the volcanic record of the 5000-km-long hotspot track. Chemical and age comparisons indicate that Site 707 lavas correlate with basalt units near the top of the Deccan flood basalt sequence. The lavas of Site 715 (55 to 60 Ma) are most similar to the islands of Mauritius and Reunion. Site 713 basalts (48 Ma) are similar to the earliest lavas of the Deccan province, and Site 706 basalts are intermediate in chemistry between those of central Indian spreading-ridge basalts and Reunion. Differences in lava compositions along the hotspot track can be related to variable mixing of plume and asthenospheric mantle, depending on the changing position of spreading-ridge segments and the hotspot during the opening of the Indian Ocean. Alternatively, time-dependent changes in the composition of hotspot melts may be due to a decrease in partial melting of a heterogeneous plume or to intrinsic changes in the composition of material supplied by the plume.
Resumo:
Mineral dust has a large impact on regional and global climate, depending on its particle size. Especially in the Atlantic Ocean downwind of the Sahara, the largest dust source on earth, the effects can be substantial but are poorly understood. This study focuses on seasonal and spatial variations in particle size of Saharan dust deposition across the Atlantic Ocean, using an array of submarine sediment traps moored along a transect at 12° N. We show that the particle size decreases downwind with increased distance from the Saharan source, due to higher gravitational settling velocities of coarse particles in the atmosphere. Modal grain sizes vary between 4 and 33 µm throughout the different seasons and at five locations along the transect. This is much coarser than previously suggested and incorporated into climate models. In addition, seasonal changes are prominent, with coarser dust in summer, and finer dust in winter and spring. Such seasonal changes are caused by transport at higher altitudes and at greater wind velocities during summer than in winter. Also the latitudinal migration of the dust cloud, associated with the Intertropical Convergence Zone, causes seasonal differences in deposition as the summer dust cloud is located more to the north, and more directly above the sampled transect. Furthermore, increased precipitation and more frequent dust storms in summer coincide with coarser dust deposition. Our findings contribute to understanding Saharan dust transport and deposition relevant for the interpretation of sedimentary records for climate reconstructions, as well as for global and regional models for improved prediction of future climate.
Resumo:
The Tara Oceans Expedition (2009-2013) was a global survey of ocean ecosystems aboard the Sailing Vessel Tara. It carried out extensive measurements of evironmental conditions and collected plankton (viruses, bacteria, protists and metazoans) for later analysis using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. The present data set includes properties of seawater, particulate matter and dissolved matter that were measured from discrete water samples collected with Niskin bottles during the 2009-2013 Tara Oceans expedition. Properties include pigment concentrations from HPLC analysis (10 depths per vertical profile, 25 pigments per depth), the carbonate system (Surface and 400m; pH (total scale), CO2, pCO2, fCO2, HCO3, CO3, Total alkalinity, Total carbon, OmegaAragonite, OmegaCalcite, and dosage Flags), nutrients (10 depths per vertical profile; NO2, PO4, N02/NO3, SI, quality Flags), DOC, CDOM, and dissolved oxygen isotopes. The Service National d'Analyse des Paramètres Océaniques du CO2, at the Université Pierre et Marie Curie, determined CT and AT potentiometrically. More than 200 vertical profiles of these properties were made across the world ocean. DOC, CDOM and dissolved oxygen isotopes are available only for the Arctic Ocean and Arctic Seas (2013).
Resumo:
The exponential growth of studies on the biological response to ocean acidification over the last few decades has generated a large amount of data. To facilitate data comparison, a data compilation hosted at the data publisher PANGAEA was initiated in 2008 and is updated on a regular basis (doi:10.1594/PANGAEA.149999). By January 2015, a total of 581 data sets (over 4 000 000 data points) from 539 papers had been archived. Here we present the developments of this data compilation five years since its first description by Nisumaa et al. (2010). Most of study sites from which data archived are still in the Northern Hemisphere and the number of archived data from studies from the Southern Hemisphere and polar oceans are still relatively low. Data from 60 studies that investigated the response of a mix of organisms or natural communities were all added after 2010, indicating a welcomed shift from the study of individual organisms to communities and ecosystems. The initial imbalance of considerably more data archived on calcification and primary production than on other processes has improved. There is also a clear tendency towards more data archived from multifactorial studies after 2010. For easier and more effective access to ocean acidification data, the ocean acidification community is strongly encouraged to contribute to the data archiving effort, and help develop standard vocabularies describing the variables and define best practices for archiving ocean acidification data.
Resumo:
Dissolved organic matter (DOM) was isolated with XAD-2 and 4 resins from different water masses of the Greenland Sea and Fram Strait. The contribution of XAD-extractable dissolved organic carbon (DOC), operationally defined as 'recalcitrant' or humic substances, to total DOC was in the range of 45 ± 9% in surface waters and 60 ± 6% in deep waters. The carbohydrate concentration and composition were determined using the l-tryptophan/sulfuric acid method (for the bulk carbohydrate concentration, TCHO) and high performance anion-exchange chromatography after sulfuric acid hydrolysis (for the distribution of total hydrolysable neutral sugars, THNS). Carbohydrates contributed up to 6.8% to both total and recalcitrant DOC. TCHO contribution to total DOC decreased with depth from on average 4.1 ± 1.2% in surface waters to 2.2 ± 1.0% in deep waters, whereas the THNS contribution was similar in both layers, accounting for 2.5 ± 1.6% (surface) and 2.4 ± 0.2% (at depth). TCHO contribution to XAD-extractable DOC also decreased with depth from 4.5 ± 1.7% to 2.1 ± 1.0%, whereas THNS contribution was almost constant, with yields of 0.5 ± 0.3% for surface samples and 0.6 ± 0.1% at depth. The molecular size distribution of the recalcitrant DOM showed for all fractions a clear trend towards small molecules in the deep sea. More than half of the XAD-extractable carbohydrates of surface samples and more than 70% of deep sea samples were found in the nonpolar fraction from XAD, which was eluted with methanol. Glucose was the dominant carbohydrate in the surface water samples, whereas in the deep sea the composition was more uniform. In the XAD extracts, the compositions were less variable than in the original samples. The neutral sugar composition, in particular glucose and the deoxysugars, is indicative of the diagenetic state of the extracted DOM. The molar ratio (fucose + rhamnose)/(arabinose + xylose) was lowest for deep sea extractable DOM, indicating a high contribution of material modified by microorganisms. The THNS composition and distribution reveal that "recalcitrant" carbohydrates are heteropolysaccharides, carbohydrate units incorporated into a framework of a highly nonpolar structure with a lack of functional groups.
Resumo:
Carbon dioxide and oxygen fluxes were measured in 0.2 m2 enclosures placed at the water sediment interface in the SW lagoon of New Caledonia. Experiments, performed at several stations in a wide range of environments, were carried out both in darkness to estimate respiration and at ambient light, to assess the effects of primary production. The community respiratory quotient (CRQ = CO2 production rate/02 consumption rate) and the community photosynthetic quotient (CPQ= gross O2 production rate/gross CO2 consumption rate) were calculated by functional regressions. The CRQ value, calculated from 61 incubations, was 1.14 (S.E. 0.05) and the CPQ value, obtained from 18 incubations, was 1.03 (S.E. 0.08). The linearity of the relationship between the O2 and the CO2 fluxes suggests that these values are representative for the whole lagoon