419 resultados para Thomson, George
Resumo:
This study presents soil temperature and moisture regimes from March 2008 to January 2009 for two active layer monitoring (CALM-S) sites at King George Island, Maritime Antarctica. The monitoring sites were installed during the summer of 2008 and consist of thermistors (accuracy of ±0.2 °C), arranged vertically with probes at different depths and one soil moisture probe placed at the bottommost layer at each site (accuracy of ± 2.5%), recording data at hourly intervals in a high capacity datalogger. The active layer thermal regime in the studied period for both soils was typical of periglacial environments, with extreme variation in surface temperature during summer resulting in frequent freeze and thaw cycles. The great majority of the soil temperature readings during the eleven month period was close to 0 °C, resulting in low values of freezing and thawing degree days. Both soils have poor thermal apparent diffusivity but values were higher for the soil from Fildes Peninsula. The different moisture regimes for the studied soils were attributed to soil texture, with the coarser soil presenting much lower water content during all seasons. Differences in water and ice contents may explain the contrasting patterns of freezing of the studied soils, being two-sided for the coarser soil and one-sided for the loamy soil. The temperature profile of the studied soils during the eleven month period indicates that the active layer reached a maximum depth of approximately 92 cm at Potter and 89 cm at Fildes. Longer data sets are needed for more conclusive analysis on active layer behaviour in this part of Antarctica.
Resumo:
The Antarctic Peninsula has been identified as a region of rapid on-going climate change with impacts on the cryosphere. The knowledge of glacial changes and freshwater budgets resulting from intensified glacier melt is an important boundary condition for many biological and integrated earth system science approaches. We provide a case study on glacier and mass balance changes for the ice cap of King George Island. The area loss between 2000 and 2008 amounted to about 20 km**2 (about 1.6% of the island area) and compares to glacier retreat rates observed in previous years. Measured net accumulation rates for two years (2007 and 2008) show a strong interannual variability with maximum net accumulation rates of 4950 mm w.e./a and 3184 mm w.e./a, respectively. These net accumulation rates are at least 4 times higher than reported mean values (1926-95) from an ice core. An elevation dependent precipitation rate of 343 mm w.e./a (2007) and 432 mm w.e./a (2008) per 100 m elevation increase was observed. Despite these rather high net accumulation rates on the main ice cap, consistent surface lowering was observed at elevations below 270 m above ellipsoid over an 11-year period. These DGPS records reveal a linear dependence of surface lowering with altitude with a maximum annual surface lowering rate of 1.44 m/a at 40 m and -0.20 m/a at 270 m above ellipsoid. These results fit well to observations by other authors and surface lowering rates derived from the ICESat laser altimeter. Assuming that climate conditions of the past 11 years continue, the small ice cap of Bellingshausen Dome will disappear in about 285 years.
Resumo:
We present a consistent data set for the ice thickness, the bedrock topography and the ice surface topography of the King George Island ice cap (Arctowski Icefield and the adjacent central part). The data set is composed of groundbased and airborne Ground Penetrating Radar (GPR) and differential GPS (DGPS) measurements, obtained during several field campaigns. The data set incorporates groundbased measurements in the safely accessible inner parts and airborne measurements in the heavily crevassed coastal areas of the ice cap. In particular, the inclusion of airborne GPR measurements with the 30MHz BGR-P30-System developed at the Institute of Geophysics (University of Münster) completes the picture of the ice geometry substantially. The compiled digital elevation model of the bedrock shows a rough, highly variable topography with pronounced valleys, ridges, and troughs. The mean ice thickness is approx. 238m, with a maximum value of approx. 400m in the surveyed area. Noticeable are bounded areas in the bedrock topography below sea level where marine based ice exists.