360 resultados para 1 sigma standard deviation for the average
Resumo:
Glacial millennial-scale paleoceanographic changes in the Southeast Pacific and the adjacent Southern Ocean are poorly known due to the scarcity of well-dated and high resolution sediment records. Here we present new surface water records from sediment core MD07-3128 recovered at 53°S off the Pacific entrance of the Strait of Magellan. The alkenone-derived sea surface temperature (SST) record reveals a very strong warming of ca. 8°C over the last Termination and substantial millennial-scale variability in the glacial section largely consistent with our planktonic foraminifera oxygen isotope (d18O) record of Neogloboquadrina pachyderma (sin.). The timing and structure of the Termination and some of the millennial-scale SST fluctuations are very similar to those observed in the well-dated SST record from ODP Site 1233 (41°S) and the temperature record from Drowning Maud Land Antarctic ice core supporting the hemispheric-wide Antarctic timing of SST changes. However, differences in our new SST record are also found including a long-term warming trend over Marine Isotope Stage (MIS) 3 followed by a cooling toward the Last Glacial Maximum (LGM). We suggest that these differences reflect regional cooling related to the proximal location of the southern Patagonian Ice Sheet and related meltwater supply at least during the LGM consistent with the fact that no longer SST cooling trend is observed in ODP Site 1233 or any SST Chilean record. This proximal ice sheet location is documented by generally higher contents of ice rafted debris (IRD) and tetra-unsaturated alkenones, and a slight trend toward lighter planktonic d18O during late MIS 3 and MIS 2.
Resumo:
Concordant plateau and isochron ages are obtained from 40Ar-39Ar incremental heating experiments on volcanic rocks recovered by drilling at three Leg 121 sites along the Ninetyeast Ridge and two dredge locations on the southern scarp of the Broken Ridge, eastern Indian Ocean. The new data confirm a northerly increase in the age of volcanism along the Ninetyeast Ridge, from 38 to 82 Ma; this lineament links current hotspot volcanism near the Kerguelen islands with the Rajmahal flood basalt eruptions at M0 time (117 ± 1 Ma). The Broken Ridge was formed over the same hotspot at 88-89 Ma, but later experienced rift-related volcanism in Paleocene time (63 Ma). The geometry and distribution of ages along these prominent volcanic ridges and the Mascarene-Chagos-Laccadive-Maldive ridge system in the western Indian Ocean are most compatible with plate motions over fixed hotspots near Kerguelen and Reunion islands, respectively.
Resumo:
Results of 40Ar-39Ar Ar dating constrain the age of the submerged volcanic succession, part of the seaward-dipping reflector sequence of the Southeast Greenland volcanic rifted margin, recovered during Leg 163. At the 63ºN drilling transect, the fully normally magnetized volcanic units at Holes 989B (Unit 1) and 990A (Units 1 and 2) are dated at 57.1 ± 1.3 Ma and 55.6 ± 0.6 Ma, respectively. This correlates with a common magnetochron, C25n. The underlying, reversely magnetized lavas at Hole 990A (Units 3-13) yield an average age of 55.8 ± 0.7 Ma and may correlate with C25r. The argon data, however, are also consistent with eruption of the lavas at Site 990 during the very earliest portion of C24. If so, the normally polarized units have to be correlated to a cryptochron (e.g., C24r-11 at ~55.57 Ma). The lavas at Holes 989B and 990A have typical oceanic compositions, implying that final plate separation between Greenland and northwest Europe took place at ~56 Ma. The age for Hole 989B lava is younger than expected from the seismic interpretations, posing questions about the structural evolution of the margin. An age of 49.6 ± 0.2 Ma for the basaltic lava at Site 988 (~66ºN) points to the importance of postbreakup tholeiitic magmatism at the rifted margin. Together with results from Leg 152, a virtually complete time frame for ~12 m.y. of pre-, syn-, and postbreakup volcanism during rifted margin evolution in Southeast Greenland can now be assembled. This time frame includes continental type volcanism at ~61-60 Ma, synbreakup volcanism beginning at ~57 Ma, and postbreakup volcanism at ~49.6 Ma. These discrete time windows coincide with distinct periods of tholeiitic magmatism from the onshore East Greenland Tertiary Igneous Province and is consistent with discrete mantle-melting events triggered by plume arrival (~61-60 Ma) under central Greenland, continental breakup (~57-54 Ma), and passage of the plume axis beneath the East Greenland rifted margin after breakup (~50-49 Ma), respectively.
Resumo:
Lithological and stratigraphical data obtained from 167 boreholes from the Schaabe spit in northeast Rügen and 46 radiocarbon datings mainly on peats, as well as interpretation of diatoms and palynological assemblages lead to a reappraisal of its sedimentational history and morphological development. The new local shoreline displacement curve is compared and discussed with the previous curve of Vorpommern (Southern Baltic Sea).
Resumo:
The upper Holocene marine section from a kasten core taken from the oxygen minimum zone off Karachi (Pakistan) at water depth 700 m contains continuously laminated sediments with a sedimentation rate of 1.2 mm/yr and a unique record of monsoonal climatic variability covering the past 5000 years. Our chronostratigraphy is based on varve counts verified by conventional and AMS14C dating. Individual hemipelagic varve couplets are about 0.8-1.5 mm thick, with light-colored terrigenous laminae (A) deposited mainly during the winter monsoon alternating with dark-colored laminae (B) rich in marine organic matter, coccoliths, and fish debris that reflect deposition during the high-productivity season of the late summer monsoon (August-October). Precipitation and river runoff appear to control varve thickness and turbidite frequency. We infer that precipitation decreased in the river watershed (indicated by thinning varves) after 3500-4000 yr B.P. This is about the time of increasing aridification in the Near East and Middle East, as documented by decreasing Nile River runoff data and lake-level lowstands between Turkey and northwestern India. This precipitation pattern continued until today with precipitation minima about 2200-1900 yr B.P., 1000 yr B.P., and in the late Middle Ages (700-400 yr B.P.), and precipitation maxima in the intervening periods. As documented by spectral analysis, the thickness of varve couplets responds to the average length of a 250-yr cycle, a 125-yr cycle, the Gleissberg cycle of solar activity (95 yr), and a 56-yr cycle of unknown origin. Higher frequency cycles are also present at 45, 39, 29-31, and 14 yr. The sedimentary gray-value also shows strong variability in the 55-yr band plus a 31-yr cycle. Because high-frequency cyclicity in the ENSO band (ca. 3.5 and 5 yr) is only weakly expressed, our data do not support a straightforward interaction of the Pacific ENSO with the monsoon-driven climate system of the Arabian Sea.
Resumo:
Marine sediments harbor an enormous quantity of microorganisms, including a multitude of novel species. The habitable zone of the marine sediment column begins at the sediment-water interface and probably extends to depths of several thousands of meters. Studies of the microbial diversity in this ecosystem have mostly relied on molecular biological techniques. We used a complementary method - analysis of intact polar membrane lipids - to characterize the in-situ microbial community in sediments covering a wide range of environmental conditions from Peru Margin, Equatorial Pacific, Hydrate Ridge, and Juan de Fuca Ridge. Bacterial and eukaryotic phospholipids were only detected in surface sediments from the Peru Margin. In contrast, deeply buried sediments, independent of their geographic location, were dominated by archaeal diether and tetraether lipids with various polar head groups and core lipids. We compared ring distributions of archaeal tetraether lipids derived from polar glycosidic precursors with those that are present as core lipids. The distributions of these related compound pools were distinct, suggestive of different archaeal sources, i.e., the polar compounds derive from sedimentary communities and the core lipids are fossil remnants from planktonic communities with possible admixtures of decayed sedimentary archaea. This in-situ production of distinct archaeal lipid populations potentially affects applications of the TEX86 paleotemperature proxy as demonstrated by offsets in reconstructed temperatures between both pools. We evaluated how varying cell and lipid stabilities will influence the sedimentary pool by using a box-model. The results are consistent with (i) a requirement of continuous inputs of freshly synthesized lipids in subsurface sediments for explaining the observed distribution of intact polar lipids, and (ii) decreasing lipid inputs with increasing burial depth.
Resumo:
The late Carboniferous to Permian is a critical period for final amalgamation of the Central Asian Orogenic Belt (CAOB), which is characterized by voluminous igneous rocks, particularly granitoids. The Kekesai composite granitoid porphyry intrusion, situated in the Chinese western Tianshan (southwest part of CAOB) includes two intrusive phases, a monzogranite phase, intruded by a granodiorite phase. LA-ICPMS U-Pb zircon analyses suggest that the monzogranitic rocks formed at 305.5±1.1 Ma, with a wide age range of inherited zircons (358-488 Ma and 1208-1391 Ma), whereas the granodioritic rocks formed at 288.7±1.5 Ma. The monzogranitic and granodioritic phases have similar geochemical features and Sr-Nd-Hf isotopic compositions. They exhibit high and variable SiO2 (66-71 wt.%) and MgO (0.41-2.14 wt.%) contents with some arc-like geochemical characteristics (e.g., enrichment of large ion lithophile elements and negative anomalies of Nb, Ta and Ti) and relatively high initial 87Sr/86Sr ratios (ISr=0.7055-0.7059), low positive eNd(t) (+0.84 to +1.03) as well as a large variation in Hf isotopic compositions with eHf(t) between +3.43 to +14.8, implying both of them were derived from similar source materials. These geochemical characteristics suggest that they might be mainly derived from the partial melting of arc-derived Mesoproterozoic mafic lower crust with involvement of a mantle-derived component in variable proportions by mantle-derived magma underplating. The presence of late-Ordovician to earliest early Carboniferous inherited zircons and the Hf isotopic compositions in the monzogranitic sample, similar to that of the widespread juvenile arc rocks, indicates some crust contamination during magma emplacement. Our new data, combined with previous studies, imply that extensive post-collisional magmatism due to underplating of mantle-derived magma, could plausibly be explained by slab break-off regime.
Resumo:
Two active chemoherm build-ups growing freely up into the oceanic water column, the Pinnacle and the South East-Knoll Chemoherms, have been discovered at Hydrate Ridge on the Cascadia continental margin. These microbially-mediated carbonate formations rise above the seafloor by several tens of meters and display a pinnacle-shaped morphology with steep flanks. The recovered rocks are pure carbonates dominated by aragonite. Based on fabric and mineralogic composition different varieties of authigenic aragonite can be distinguished. Detailed visual and petrographic investigations unambiguously reveal the involvement of microbes during the formation of the carbonates. The fabric of the cryptocrystalline and fibrous aragonite can be described as thrombolitic. Fossilized microbial filaments in the microcrystalline aragonite indicate the intimate relationship between microbes and carbonates. The strongly 13C-depleted carbon isotope values of the samples (as low as -48.1 per mill PDB) are characteristic of methane as the major carbon source for the carbonate formation. The methane-rich fluids from which the carbonates are precipitated originate most probably from a gas reservoir below the bottom-simulating reflector (BSR) and rise through fault systems. The d18O values of the aragonitic chemoherm carbonates are substantially higher (as high as 5.0 per mill PDB) than the expected equilibrium value for an aragonite forming from ambient seawater (3.5 per mill PDB). As a first approximation this indicates formation from glacial ocean water but other factors are considered as well. A conceptual model is presented for the precipitation of these chemoherm carbonates based on in situ observations and the detailed petrographic investigation of the carbonates. This model explains the function of the consortium of archaea and sulfate-reducing bacteria that grows on the carbonates performing anaerobic oxidation of methane (AOM) and enabling the precipitation of the chemoherms above the seafloor surrounded by oxic seawater. Beggiatoa mats growing on the surface of the chemoherms oxidize the sulfide provided by sulfate-dependent anaerobic oxidation of methane within an oxic environment. The contact between Beggiatoa and the underlying microbial consortium represents the interface between the overlying oxic water column and an anoxic micro-environment where carbonate formation takes place.
Resumo:
The European Project for Ice Coring in Antarctica (EPICA) includes a comprehensive pre-site survey on the inland ice plateau of Dronning Maud Land. This paper focuses on the investigation of the 18O content of shallow firn and ice cores. These cores were dated by profiles derived from dielectric-profiling and continuous flow analysis measurements. The individual records were stacked in order to obtain composite chronologies of 18O contents and accumulation rates with enhanced signal-to-noise variance ratios.These chronologies document variations in the last 200 and 1000 years.The 18O contents and accumulation rates decreased in the 19th century and increased during the 20th century.Using the empirical relationships between stable isotopes, accumulation rates and the 10m firn temperature, the variation of both parameters can be explained by the same temperature history.But other causes for these variations, such as the build-up of the snow cover, cannot be excluded. A marked feature of the 1000 year chronology occurs during the period AD 1180-1530 when the 18O contents remains below the long-term mean. Cross-correlation analyses between five cores from the Weddell Sea region and Dronning Maud Land show that 18O records can in some periods be positively correlated and in others negatively correlated, indicating a complex climatic history in time and space.
Resumo:
In the Arctic, under-ice primary production is limited to summer months and is not only restricted by ice thickness and snow cover but also by the stratification of the water column, which constrains nutrient supply for algal growth. RV Polarstern visited the ice-covered Eastern Central basins between 82 to 89°N and 30 to 130°E in summer 2012 when Arctic sea ice declined to a record minimum. During this cruise, we observed a widespread deposition of ice algal biomass of on average 9 g C per m**2 to the deep-sea floor of the Central Arctic basins. Data from this cruise will contribute to assessing the impact of current climate change on Arctic productivity, biodiversity, and ecological function.
Resumo:
The delta13C and Cd measurements from benthic foraminifera from Biogeochemical Ocean Flux Study (BOFS) northeast Atlantic Ocean sediment cores are presented. The delta13C values in glacial foraminifera are consistent with those from elsewhere in the North Atlantic Ocean. For intermediate water (1000 - 2000 m water depth), delta13C values were higher at the last glacial maximum than in present North Atlantic Deep Water (NADW), whereas for deep water (>2000 m) they were lower during the glacial maximum. The Cd concentrations of glacial northeast Atlantic intermediate water were lower than those of present NADW. However, deepwater Cd concentrations increased to values between NADW and present Pacific Deep Water (PDW). The delta13C and Cd data are consistent and show that the northeast Atlantic Ocean was strongly stratified with 13C enriched, low Cd intermediate water overlying 13C depleted, high Cd deep water. The glacial water column comprised two different water masses: deep water, similar in character to present Antarctic Bottom Water (AABW), and intermediate water, different in character from both AABW and NADW, and any present intermediate-depth North Atlantic water. The characteristics of glacial intermediate water were, however, similar to present near-surface waters in the North Atlantic, which suggests rapid ventilation of the glacial ocean to depths of up to 2000 m by cold, nutrient-depleted young surface waters.
Resumo:
The South Shetland Islands are located at the northern tip of the AP which is among the fastest warming regions on Earth. The islands are especially vulnerable to climate change due to their exposure to transient low-pressure systems and their maritime climate. Surface air temperature increases (2.5K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. We have compiled a unique meteorological data set for the King George Island (KGI)/Isla 25 de Mayo, the largest of the South Shetland Islands. It comprises high-temporal resolution and spatially distributed observations of surface air temperature, wind directions and wind velocities, as well as glacier ice temperatures in profile with a fully equipped automatic weather station on the Warszawa Icefield, from November 2010 and ongoing. In combination with two long-term synoptic datasets (40 and 10 years, respectively) and NCEP/NCAR reanalysis data, we have looked at changes in the climatological drivers of the glacial melt processes, and the sensitivity of the inland ice cap with regard to winter melting periods and pressure anomalies. The analysis has revealed, a positive trend of 5K over four decades in minimum surface air temperatures for winter months, clearly exceeding the published annual mean statistics, associated to a decrease in mean monthly winter sea level pressure. This concurs with a positive trend in the Southern Annular Mode (SAM) index, which gives a measure for the strength and extension of the Antarctic vortex. We connect this trend with a higher frequency of low-pressure systems hitting the South Shetland Islands during austral winter, bringing warm and moist air masses from lower latitudes. Due to its exposure to the impact of transient synoptic weather systems, the ice cap of KGI is especially vulnerable to changes during winter glacial mass accumulation period. A revision of seasonal changes in adiabatic air temperature lapse rates and their dependency on exposure and elevation has shown a clear decoupling of atmospheric surface layers between coastal areas and the higher-elevation ice cap, showing the higher sensitivity to free atmospheric flow and synoptic changes. Observed surface air temperature lapse rates show a high variability during winter months (standard deviations up to ±1.0K/100 m), and a distinct spatial variability reflecting the impact of synoptic weather patterns. The observed advective conditions bringing warm, moist air with high temperatures and rain, lead to melt conditions on the ice cap, fixating surface air temperatures to the melting point. This paper assesses the impact of large-scale atmospheric circulation variability and climatic changes on the atmospheric surface layer and glacier mass accumulation of the upper ice cap during winter season for the Warszawa Icefield on KGI.