234 resultados para wh-complementizer
Resumo:
A detailed Pliocene oxygen isotope record from the Ontong Java Plateau, based on measurements of the surface-dwelling planktonic foraminifer Globigerinoides sacculifer, was produced for the period from 5 to 2 Ma. The record documents major long- and short-term climate changes. The results show periods of enhanced ice volume at 4.6 to 4.3 Ma and after 2.85 Ma, a long-term warming trend from 4.1 to 3.7 Ma, and a distinct cooling trend that was initiated at 3.5 Ma and progressed through the initiation of large-scale Northern Hemisphere glaciation after 2.85 Ma (according to the time scale of Shackleton and others proposed in 1990). Periods of high average ice volumes also show the highest d18O amplitudes. The pattern of climate cyclicity changed markedly at about 2.85 Ma. Earlier times were marked by high-frequency variability at the precessional frequencies or even higher frequencies, pointing to low-latitude processes as a main controlling factor driving planktonic d18O variability in this period. The high-frequency variability is not coherent with insolation and points to strong nonlinearity in the way the climate system responded to orbital forcing before the onset of large scale Northern Hemisphere glaciation. After 3 Ma, stronger 41-k.y. cyclicity appears in the record. The shift in pattern is clearest around 2.85 Ma (according to the time scale proposed by Shackleton and others in 1990), 100-200 k.y. before the most dramatic spread of Northern Hemisphere ice sheets. This indicates that high-latitude processes from this point on began to take over and influence most strongly the d18O record, which now reflects ice-volume fluctuations related to the climatic effects of obliquity forcing on the seasonality of high-latitude areas, most probably in the Northern Hemisphere. The general Pliocene trend is that high-latitude climate sensitivity and instability was increasing, and the causal factors producing the intensified glacial cyclicity during the Pliocene must be factors that enhance cooling and climate sensitivity in the subarctic areas.
Resumo:
We report on diatom abundance and preservation stratigraphy in the uppermost four cores of Ocean Drilling Program Hole 806B, which span the Quaternary period. Changes in diatom abundance and preservation show a rather complicated pattern, with much noise at high frequencies. However, in the cycles corresponding to eccentricity and obliquity variations, the picture is quite clear. Abundance and preservation follow glacial-interglacial cycles, with lowest abundances and poorest preservation observed in sediments that correspond to glacial stages. Seventy taxa compose the diatom assemblage of Hole 806B (from Samples 130-806B-1H-1, 8-9 cm, to -4H-7, 73-74 cm) with Azpeitia nodulifera as the dominant member. This species exhibits significant size variations related to glacial and interglacial stages during the Pleistocene. The distribution of power in the Fourier spectrum of the diatom signal (in the time domain) displays the expected Milankovitch frequencies (at 100,41, and 24-18 k.y.). It also shows concentration at various "odd" frequencies, especially at 62 k.y., suggesting a complicated response of productivity (and silicate chemistry) to climatic forcing.
Resumo:
Oceanographic changes in the western equatorial Pacific during the past 6 m.y. are inferred from carbon isotopic analyses of planktonic and benthic foraminifers from Ontong Java Plateau (DSDP Site 586). Sample spacing is 1.5 m (ca. 35,000-75,000 yr). An overall trend of d13C toward lighter values is evident for the last 5 m.y. in all four foraminiferal taxa analyzed (G. sacculifer, Pulleniatina, P. wuellerstorfi, and O. umbonatus). This trend is interpreted as an enrichment of the global ocean with 12C, because of the addition of carbon from organic carbon reservoirs (or lack of removal of carbon to such reservoirs), as a consequence of an overall drop in sea level. Differences between shallow- and deep-water d13C decrease slightly during this time interval, suggesting a moderate drop in productivity. This drop is not sufficient to explain the drop in sedimentation rate, however, much of which apparently must be ascribed to winnowing effects. A marked convergence in the d13C values of planktonic taxa exists within the last 2 m.y. We propose that this convergence indicates nutrient depletion in thermocline waters, caused by the vigorous removal of phosphate in marginal upwelling regions, or by the stripping of intermediate waters in their source regions. No large shifts are seen in the carbon isotope record of the last 6 m.y., in contrast to the oxygen isotope record. Some indication of cyclicity is present, with a period between 0.5 and 1.0 m.y. (especially in the earlier portion of the record).
Resumo:
The distribution of Mesozoic calcareous nannofossils are tabulated for Holes 807C and 8O3D drilled on the Ontong Java Plateau in the western equatorial Pacific. Nannofossils were abundant but poorly preserved in Hole 803D and range from early Albian to Maastrichtian in age. A possibly complete and expanded K/T boundary interval yielded few diagnostic taxa because of the dissolution of Tertiary forms. The only nannofossil-bearing sample examined from Hole 803D contained the uppermost Maastrichtian zonal indicator Micula prinsii.
Resumo:
We compare a compilation of 220 sediment core d13C data from the glacial Atlantic Ocean with three-dimensional ocean circulation simulations including a marine carbon cycle model. The carbon cycle model employs circulation fields which were derived from previous climate simulations. All sediment data have been thoroughly quality controlled, focusing on epibenthic foraminiferal species (such as Cibicidoides wuellerstorfi or Planulina ariminensis) to improve the comparability of model and sediment core carbon isotopes. The model captures the general d13C pattern indicated by present-day water column data and Late Holocene sediment cores but underestimates intermediate and deep water values in the South Atlantic. The best agreement with glacial reconstructions is obtained for a model scenario with an altered freshwater balance in the Southern Ocean that mimics enhanced northward sea ice export and melting away from the zone of sea ice production. This results in a shoaled and weakened North Atlantic Deep Water flow and intensified Antarctic Bottom Water export, hence confirming previous reconstructions from paleoproxy records. Moreover, the modeled abyssal ocean is very cold and very saline, which is in line with other proxy data evidence.
Resumo:
A 20 kyr long sediment sequence from the Congo deep sea fan (core GeoB 6518-1), one of the world's largest deep sea river fans, has been analysed for bulk and molecular proxies in order to reconstruct the marine, soil and plant organic carbon (OC) contributions to these sediments since the last glacial maximum. The bulk proxies applied, C/N ratio and d13Corg, ranged from 10 to 12.5 and from -24.5 to -21 per mill VPDB, respectively. As molecular proxies, concentrations of marine derived alkenones and terrestrial derived odd-numbered n-alkanes were used, which varied between 0.2 and 4 µg/g dry weight sediment. In addition, the branched vs. isoprenoid tetraether (BIT) index, a proxy for soil organic matter input, was used, which varied from 0.3 to 0.5 in this core. Application of binary mixing models, based on the different individual proxies, showed estimates for terrestrial OC input varying by up to 50% due to the heterogeneous nature of the OC. Application of a three end-member mixing model using the d13Corg content, the C/N ratio and the BIT index, enabled the distinction of soil and plant organic matter as separate contributors to the sedimentary OC pool. The results show that marine OC accounts for 20% to 40% of the total OC present in the deep sea fan sediments over the last 20 kyr and that soil OC accounts for about half (45% on average) of the OC present. This suggests that soil OC represents the majority of the terrestrial OC delivered to the fan sediments. Accumulation rates of the plant and soil OC fractions over the last 20 kyr varied by a factor of up to 5, and are strongly related to sediment accumulation rates. They showed an increase starting at ca. 17 kyr BP, a decline during the Younger Dryas, peak values during the early Holocene and lower values in the late Holocene. This pattern matches with reconstructions of past central African humidity and Congo River discharge from the same core and revealed that central African precipitation patterns exert a dominant control on terrestrial OC deposition in the Congo deep sea fan. Marine OC accumulation rates are only weakly related to sediment accumulation rates and vary only little over time compared to the terrigenous fractions. These variations are likely a result of enhanced preservation during times of higher sedimentation rates and of relative small fluctuations in primary production due to wind-driven upwelling.
Resumo:
The preliminary planning and approach to site 13 were taken from the JOIDES Atlantic Advisory Panel Report and from a previous detailed survey of the site by R/V Vema of the Lamont Geological Observatory. Several CSP profiles crossing the selected site in various directions show an uplifted portion of the sea floor roughly circular in shape of about 10 kilometers in diameter. In contrast to the smooth bottom of the surrounding abyssal plain, the topography of the small rise selected for the site has a small-scale roughness of amplitude of 40 to 80 meters. The work reported here is a biostratigraphic summary of available samples. Only the most important and biostratigraphically significant components of the faunas have been noted. No attempt has been made to give an exhaustive faunal analysis of the samples seen.