511 resultados para inductively coupled plasma


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ODP Hole 801C penetrates >400 m into 170-Ma oceanic basement formed at a fast-spreading ridge. Most basalts are slightly (10-20%) recrystallized to saponite, calcite, minor celadonite and iron oxyhydroxides, and trace pyrite. Temperatures estimated from oxygen isotope data for secondary minerals are 5-100°C, increasing downward. At the earliest stage, dark celadonitic alteration halos formed along fractures and celadonite, and quartz and chalcedony formed in veins from low-temperature (<100°C) hydrothermal fluids. Iron oxyhydroxides subsequently formed in alteration halos along fractures where seawater circulated, and saponite and pyrite developed in the host rock and in zones of restricted seawater flow under more reducing conditions. Chemical changes include variably elevated K, Rb, Cs, and H2O; local increases in FeT, Ba, Th, and U; and local losses of Mg and Ni. Secondary carbonate veins have 87Sr/86Sr = 0.706337 - 0.707046, and a negative correlation with d18O results from seawater-basalt interaction. Carbonates could have formed at any time since the formation of Site 801 crust. Variable d13C values (-11.2? to 2.9?) reflect the incorporation of oxidized organic carbon from intercalated sediments and changes in the d13C of seawater over time. Compared to other oceanic basements, a major difference at Site 801 is the presence of two hydrothermal silica-iron deposits that formed from low-temperature hydrothermal fluids at the spreading axis. Basalts associated with these horizons are intensely altered (60-100%) to phyllosilicates, calcite, K-feldspar, and titanite; and exhibit large increases in K, Rb, Cs, Ba, H2O, and CO2, and losses of FeT, Mn, Mg, Ca, Na, and Sr. These effects may be common in crust formed at fast-spreading rates, but are not ubiquitous. A second important difference is that the abundance of brown oxidation halos along fractures at Site 801 is an order of magnitude less than at some other sites (2% vs. 20-30%). Relatively smooth basement topography (<100 m) and high sedimentation rate (8 m/Ma) probably restricted the access of oxygenated seawater. Basement lithostratigraphy and early low-temperature hydrothermal alteration and mineral precipitation in fractures at the spreading axis controlled permeability and limited later flow of oxygenated seawater to restricted depth intervals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early Cretaceous volcanic rocks of the Mariisky sequence and Early Cenozoic extrusive-vent rocks of the Mary Cape are exposed at the most northwest of the Schmidt Peninsula, North Sakhalin. In chemical composition, all the rocks are subdivided into four groups. Three groups include volcanic rocks of the Mariisky sequence, which consists, from bottom to top, of calc-alkaline rocks, transitional calc-alkaline-tholeiite rocks, and incompatible element-depleted tholeiites. These rocks show subduction geochemical signatures and are considered as a fragment of the Moneron-Samarga island arc system. Trace-element modeling indicates their derivation through successive melting of a garnet-bearing mantle and garnet-free shallower mantle sources containing amphibole; pyroxene; and, possibly, spinel. The mixed subduction and intra-plate characteristics of the extrusive vent rocks of the Mary Cape attest to their formation in a transform continental margin setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bright red "jasperoids" were recovered at three positions during Leg 193 drilling below Roman Ruins (Site 1189) in the PACMANUS hydrothermal field. These do not represent fossil exhalative oxide deposits equivalent to those associated with sulfide chimneys at the Roman Ruins seafloor. Rather, they constitute an integral, relatively early stage involving oxidized fluids in the development of veins and breccias that characterize the mostly sulfidic stockwork zone intersected below Roman Ruins in Hole 1189B. They formed by growth of quartz in open spaces created by hydrofracturing, the characteristic feature being mostly euhedral cores dusted by tiny hematite flakes. In one occurrence there are also frondlike aggregates and possible earlier cavity linings of hematite, overgrown by quartz, that potentially formed by maturation of ferruginous gels first deposited in the openings. The trace element geochemistry of the jasperoids, apart from minor enrichment in uranium, provides no indication that they represent subsurface conduits for fluids that deposit Fe-Mn-Si at the seafloor, though this remains a possibility for some such deposits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subducted sediments play an important role in arc magmatism and crust-mantle recycling. Models of continental growth, continental composition, convergent margin magmatism and mantle heterogeneity all require a better understanding of the mass and chemical fluxes associated with subducting sediments. We have evaluated subducting sediments on a global basis in order to better define their chemical systematics and to determine both regional and global average compositions. We then use these compositions to assess the importance of sediments to arc volcanism and crust-mantle recycling, and to re-evaluate the chemical composition of the continental crust. The large variations in the chemical composition of marine sediments are for the most part linked to the main lithological constituents. The alkali elements (K, Rb and Cs) and high field strength elements (Ti, Nb, Hf, Zr) are closely linked to the detrital phase in marine sediments; Th is largely detrital but may be enriched in the hydrogenous Fe-Mn component of sediments; REE patterns are largely continental, but abundances are closely linked to fish debris phosphate; U is mostly detrital, but also dependent on the supply and burial rate of organic matter; Ba is linked to both biogenic barite and hydrothermal components; Sr is linked to carbonate phases. Thus, the important geochemical tracers follow the lithology of the sediments. Sediment lithologies are controlled in turn by a small number of factors: proximity of detrital sources (volcanic and continental); biological productivity and preservation of carbonate and opal; and sedimentation rate. Because of the link with lithology and the wealth of lithological data routinely collected for ODP and DSDP drill cores, bulk geochemical averages can be calculated to better than 30% for most elements from fewer than ten chemical analyses for a typical drill core (100-1000 m). Combining the geochemical systematics with convergence rate and other parameters permits calculation of regional compositional fluxes for subducting sediment. These regional fluxes can be compared to the compositions of arc volcanics to asses the importance of sediment subduction to arc volcanism. For the 70% of the trenches worldwide where estimates can be made, the regional fluxes also provide the basis for a global subducting sediment (GLOSS) composition and flux. GLOSS is dominated by terrigenous material (76 wt% terrigenous, 7 wt% calcium carbonate, 10 wt% opal, 7 wt% mineral-bound H2O+), and therefore similar to upper continental crust (UCC) in composition. Exceptions include enrichment in Ba, Mn and the middle and heavy REE, and depletions in detrital elements diluted by biogenic material (alkalis, Th, Zr, Hf). Sr and Pb are identical in GLOSS and UCC as a result of a balance between dilution and enrichment by marine phases. GLOSS and the systematics of marine sediments provide an independent approach to the composition of the upper continental crust for detrital elements. Significant discrepancies of up to a factor of two exist between the marine sediment data and current upper crustal estimates for Cs, Nb, Ta and Ti. Suggested revisions to UCC include Cs (7.3 ppm), Nb (13.7 ppm), Ta (0.96 ppm) and TiO2 (0.76 wt%). These revisions affect recent bulk continental crust estimates for La/Nb and U/Nb, and lead to an even greater contrast between the continents and mantle for these important trace element ratios. GLOSS and the regional sediment data also provide new insights into the mantle sources of oceanic basalts. The classical geochemical distinction between 'pelagic' and 'terrigenous' sediment sources is not valid and needs to be replaced by a more comprehensive understanding of the compositional variations in complete sedimentary columns. In addition, isotopic arguments based on surface sediments alone can lead to erroneous conclusions. Specifically, the Nd/Hf ratio of GLOSS relaxes considerably the severe constraints on the amount of sediment recycling into the mantle based on earlier estimates from surface sediment compositions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Very rare, halogen-rich andesite melt inclusions (HRA) in bytownitic plagioclase phenocrysts (An89-90) from tephra fallout of the Izu arc volcanic front (Izu VF) provide new insights into the processes of fluid release from slab trenchward to the volcanic front in a cool subduction zone. These HRA are markedly enriched in Cl, F and Li - by factors of up to 8 (Cl, F) and 1.5 (Li) - but indistinguishable with respect to the fluid-mobile large-ion lithophile elements (LILE; K, Sr, Rb, Cs, Ba, Pb, U), rare earths (REE) or high field strength elements (HFSE) from the low-K tholeiitic magmas of the Izu VF. We suggest that the chemical signature of the HRA reflects the presence of a fluid in the mantle source that originated from the serpentinized mantle peridotite above the metacrust. This "wedge serpentinite" presumably formed by fluid infiltration beneath the forearc and was subsequently down-dragged with the slab to arc front depths. The combined evidence from the Izu VF (?110 km above slab) and the outer forearc serpentinite seamounts (~25 to 30 km above slab) suggests that the slab flux of B and Cl is highest beneath the forearc, and decreases with increasing slab depths. In contrast, the slab flux of Li is minor beneath the forearc, but increases with depth. Fluorine may behave similarly to Li, whereas the fluid-mobile LILE appear to be largely retained in the slab trenchward from the Izu VF. Consequently, the chemical signatures of both Izu trench sediments and basaltic rocks appear preserved until arc front depths.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A record of inorganic geochemical variability was produced from a contiguous sequence of 35 samples, with 1 cm spacing, recovered from Hole 1221C. This record covers from 153.91 to 154.27 meters below seafloor and spans the Carbon Isotope Excursion (CIE) associated with the Paleocene/Eocene boundary interval. Elemental concentrations were determined for Al, As, Ba, Ca, Fe, K, Mg, Mn, P, Si, Sr, Ti, Cd, Co, Cr, Cu, Hf, Mo, Nb, Ni, Pb, Pt, Re, Sc, V, Y, Zn, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Most concentration profiles exhibit a marked peak coincident with or just prior to the CIE. In addition, the rare earth element pattern exhibits a significant flattening of the typical, prominent negative Ce anomaly across the same interval.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The conventional model of leaching volcanic rocks as a source of metals in a seafloor hydrothermal systems has been tested by examining the behavior of Pb and other trace elements during hydrothermal alteration. ODP Leg 193 drill sites 1188 (Snowcap) and 1189 (Roman Ruins) on Pual Ridge in the eastern Manus Basin offshore eastern Papua New Guinea provide a unique three-dimensional window into an active back-arc hydrothermal system. We investigate by means of a LA-ICP-MS microbeam technique the capacity of Pb to be leached from a host volcanic rock exposed to various types and intensities of alteration. Our results are in general agreement with previous studies that utilized bulk analytical techniques but provide a more detailed explanation of the processes. Fresh representative dacitic lavas from the Pual Ridge have an average whole rock Pb content of 5.2 ppm, an average interstitial glass Pb content of 5.6 ppm and an average plagioclase Pb content of 1.0 ppm. Altered matrix samples have highly variable Pb values ranging from 0 to 52.4 ppm. High Pb values in altered samples are associated with a low temperature chlorite and clay mineral assemblage, in some cases overprinted by a high temperature (up to 350°C) silica-rich "bleaching" alteration. Only the most highly altered matrix samples have REE patterns that differ from the fresh Pual Ridge dacite. This may represent either different lava histories or alteration characteristics that have affected normally immobile REEs. Altered samples with the highest Pb values have similar REE patterns to those of the local unaltered lavas. They are compositionally similar to typical Pual Ridge dacites indicating a genetic relationship between the main regional volcanic suite and the subseafloor hydrothermally altered, Pb-enriched material. Relative loss/gain for Pb between the analyzed altered samples and a calculated precursor show a maximum relative gain of 901%. Samples with relative Pb gain from both drill sites are associated with lower temperature alteration mineral assemblages characterized by pervasive chloritization. The related lower temperature (220-250°C) neutral to slightly acidic fluids have been ascribed by others to return circulation of hydrothermal fluids that did not interact with seawater. Because altered samples have a higher Pb content than the fresh precursor, leaching of fresh volcanic rocks cannot be the source of Pb in the hydrothermal systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Ninetyeast Ridge (NER), a north-south striking, 5,000 km long, 77 to 43 Ma chain of basaltic submarine volcanoes in the eastern Indian Ocean formed as a hotspot track created by rapid northward migration of the Indian Plate over the Kerguelen hotspot. Based on the major and trace element contents of unaltered basaltic glasses from six locations along the NER, we show that the NER was constructed by basaltic magma derived from at least three geochemically distinct mantle sources: (1) a source enriched in highly incompatible elements relative to primitive mantle like the source of the 29-24 Ma flood basalts in the Kerguelen Archipelago; (2) an incompatible element-depleted source similar to the source of Mid-Ocean Ridge Basalt (MORB) erupted along the currently active Southeast Indian Ridge (SEIR); and (3) an incompatible element-depleted source that is compositionally and mineralogically distinct from the source of SEIR MORB. Specifically, this depleted mantle source was garnet-bearing and had higher Y/Dy and Nb/Zr, but lower Zr/Sm, than the SEIR MORB source. We infer that this third source formed as a garnet-bearing residue created during a previous melting event, perhaps an initial partial melting of the mantle hotspot. Subsequently, this residue partially melted over a large pressure range, from slightly over 3 GPa to less than 1 GPa, and to a high extent (~ 30%) thereby creating relatively high SiO2 and FeO contents in some NER basalts relative to SEIR MORB.