236 resultados para CoCos
Resumo:
The Gulf of Carpentaria is an epicontinental sea (maximum depth 70 m) between Australia and New Guinea, bordered to the east by Torres Strait (currently 12 m deep) and to the west by the Arafura Sill (53 m below present sea level). Throughout the Quaternary, during times of low sea-level, the Gulf was separated from the open waters of the Indian and Pacific Oceans, forming Lake Carpentaria, an isolation basin, perched above contemporaneous sea-level with outlet channels to the Arafura Sea. A preliminary interpretation is presented of the palaeoenvironments recorded in six sediment cores collected by the IMAGES program in the Gulf of Carpentaria. The longest core (approx. 15 m) spans the past 130 ka and includes a record of sea-level/lake-level changes, with particular complexity between 80 and 40 ka when sea-level repeatedly breached and withdrew from Gulf/Lake Carpentaria. Evidence from biotic remains (foraminifers, ostracods, pollen), sedimentology and geochemistry clearly identifies a final marine transgression at about 9.7 ka (radiocarbon years). Before this transgression, Lake Carpentaria was surrounded by grassland, was near full, and may have had a surface area approaching 600 km-300 km and a depth of about 15 m. The earlier rise in sea-level which accompanied the Marine Isotopic Stage 6/5 transgression at about 130 ka is constrained by sedimentological and biotic evidence and dated by optical- and thermoluminescence and amino acid racemisation methods.
Resumo:
Drilling a complete deep crustal section has been a primary yet elusive goal since the inception of scientific ocean drilling. In situ ocean crustal sections would contribute enormously to our understanding of the formation and subsequent evolution of the ocean crust, in particular the interplay between magmatic, hydrothermal, and tectonic processes. Ocean Drilling Program (ODP) Leg 206 was the first of a multileg project to drill an in situ crustal section that penetrated the gabbroic rocks of the Cocos plate (6°44.2'N, 91°56.1'W), which formed ~15 m.y. ago on the East Pacific Rise during a period of superfast spreading (>200 mm/yr) (Wilson, Teagle, Acton, et al., 2003, doi:10.2973/odp.proc.ir.206.2003). During Leg 206, the upper 500 m of basement was cored in Holes 1256C and 1256D with moderate to high recovery rates. The igneous rocks recovered are predominantly thin (10 cm to 3 m) basalt flows separated by chilled margins. There are also several massive flows (>3 m thick), although their abundance decreases with depth in Hole 1256D, as well as minor pillow basalts, hyaloclastites, and rare dikes. The lavas have been slightly (<10%) altered by low-temperature hydrothermal fluids, which resulted in pervasive dark gray background alteration and precipitation of saponite, pyrite, silica, celadonite, and calcium carbonate veins. Here we present a geochemical analysis of the CaCO3 recovered from cores. The compositions of ridge flank fluids within superfast spreading crust will be determined from these data, following the approach of Hart et al. (1994, doi:10.1029/93JB02035), Yatabe et al. (2000, doi:10.2973/odp.proc.sr.168.003.2000), and Coggon et al. (2004, doi:10.1016/S0012-821X(03)00697-6).
Resumo:
Drilling a transect of holes across the Costa Rica forearc during ODP Leg 170 demonstrated the margin wedge to be of continental, non accretionary origin, which is intersected by permeable thrust faults. Pore waters from four drillholes, two of which penetrated the décollement zone and reached the underthrust lower plate sedimentary sequence of the Cocos Plate, were examined for boron contents and boron isotopic signatures. The combined results show dilution of the uppermost sedimentary cover of the forearc, with boron contents lower than half of the present-day seawater values. Pore fluid "refreshening" suggests that gas hydrate water has been mixed with the sediment interstitial water, without profoundly affecting the d11B values. Fault-related flux of a deeply generated fluid is inferred from high B concentration in the interval beneath the décollement, being released from the underthrust sequence with incipient burial. First-order fluid budget calculations over a cross-section across the Costa Rica forearc indicate that no significant fluid transfer from the lower to the upper plate is inferred from boron fluid profiles, at least within the frontal 40 km studied. Expulsed lower plate pore water, which is estimated to be 0.26-0.44 km3 per km trench, is conducted efficiently along and just beneath the décollement zone, indicating effective shear-enhanced compaction. In the upper plate forearc wedge, dewatering occurs as diffuse transport as well as channelled flow. A volume of approximately 2 km3 per km trench is expulsed due to compaction and, to a lesser extent, lateral shortening. Pore water chemistry is influenced by gas hydrate instability, so that it remains unknown whether deep processes like mineral dehydration or hydrocarbon formation may play a considerable role towards the hinterland.
Resumo:
Changes in El Niño-Southern Oscillation (ENSO) variability are difficult to extract from paleoceanographic reconstructions because they are superimposed on changes in seasonal variability that modulate the first-order climate signal. Here we address this problem by reconstructing thermocline structure from a marine sediment core retrieved from the eastern equatorial Pacific. At the core location, changes in hydrologic parameters within the thermocline are linked to ENSO activity, with a reduced influence of seasonal variability compared to surface waters. We performed repeated isotopic analyses (d18O) on single specimens of the thermocline-dwelling planktonic foraminifera Neogloboquadrina dutertrei at several targeted time periods over the last 50 ka to extract the total thermocline variance, a parameter supposed to reveal changes in ENSO. No fundamental changes in amplitude and frequency of the events were detected despite differences in climatic background. However, our data suggest that long-term variations in the thermocline variability occurred over the last 50 ka, with the highest and lowest ENSO activities occurring during the last glacial period and the Last Glacial Maximum, respectively.
Resumo:
The plasticity characteristics of the Quaternary sediments of the Guatemalan continental margin were determined from five sites drilled during Leg 67 of the Deep Sea Drilling Project. The 64 samples analyzed are from various marine environments, including the Cocos Plate, Middle America Trench, and the trench lower slope to midslope of the Guatemalan continental slope. The sediments are primarily hemipelagic muds and trench-fill turbidites and include quantities of siliceous and calcareous biogenic components. The sediments are generally classified as organic clays of medium to high plasticity, containing micaceous sands and silts, with 14% classed as inorganic clays of medium to high plasticity. High sedimentation rates in Quaternary sediments are the result, in part, of sediment gravity flows that depend upon rheological properties, i.e., sediment plasticity. Mudflows and cohesive debris flows appear to be significant downslope transport mechanisms in these highly plastic sediments.
Resumo:
Abundant hydroclimatic evidence from western Amazonia and the adjacent Andes documents wet conditions during Heinrich Stadial 1 (HS1, 18-15 ka), a cold period in the high latitudes of the North Atlantic. This precipitation anomaly was attributed to a strengthening of the South American summer monsoon due to a change in the Atlantic interhemispheric sea surface temperature (SST) gradient. However, the physical viability of this mechanism has never been rigorously tested. We address this issue by combining a thorough compilation of tropical South American paleorecords and a set of atmosphere model sensitivity experiments. Our results show that the Atlantic SST variations alone, although leading to dry conditions in northern South America and wet conditions in northeastern Brazil, cannot produce increased precipitation over western Amazonia and the adjacent Andes during HS1. Instead, an eastern equatorial Pacific SST increase (i.e., 0.5-1.5 °C), in response to the slowdown of the Atlantic Meridional Overturning Circulation during HS1, is crucial to generate the wet conditions in these regions. The mechanism works via anomalous low sea level pressure over the eastern equatorial Pacific, which promotes a regional easterly low-level wind anomaly and moisture recycling from central Amazonia towards the Andes.
Resumo:
Mineralogical (microprobe) and geochemical (X-ray fluorescence, neutron activation analyses) data are given for 18 samples of volcanic rocks from the Guatemala Trench area (Deep Sea Drilling Project Leg 67). Typical fresh oceanic tholeiites occur in the trench itself (Hole 500) and in its immediate vicinity on the Cocos Plate (Site 495). Several samples (often reworked) of "spilitic" oceanic tholeiites are also described from the Trench: their mineralogy (greenschist facies association - actinolite + plagioclase + chlorite) and geochemistry (alteration, sometimes linked to manganese and zinc mineralization) are shown to result from high-temperature (300°-475°C) hydrothermal sea water-basalt interactions. The samples studied are depleted in light rare-earth elements (LREE), with the exception of the slightly LREE-enriched basalts from Hole 500. The occurrence of such different oceanic tholeiites in the same area is problematic. Volcanic rocks from the Guatemala continental slope (Hole 494A) are described as greenschist facies metabasites (actinolite + epidote + chlorite + plagioclase + calcite + quartz), mineralogically different from the spilites exposed on the Costa Rica coastal range (Nicoya Peninsula). Their primary magmatic affinity is uncertain: clinopyroxene and plagioclase compositions, together with titanium and other hygromagmaphile element contents, support an "active margin" affinity. The LREE-depleted patterns encountered in the present case, however, are not frequently found in orogenic samples but are typical of many oceanic tholeiites.
Resumo:
Seven sites were drilled during Leg 67 along a transect across the Middle America Trench off Guatemala: four (Sites 494, 496, 497, and 498) on continental slope, two (Sites 499 and 500) on Trench floor, and one (Site 495) on the Cocos Plate. We studied the mineralogy of sediments from Sites 494, 495, 496, 499, and 500. Our objective was to investigate the origin and source of separate minerals and mineral assemblages, giving special attention to the influence of the alteration of basalts on the sediment mineralogy, which we expected to be particularly important in layers just above oceanic basement.