382 resultados para Adjusted for vital effect after Marchitto et al. (2014)
Resumo:
Despite the heightened awareness of ocean acidification (OA) effects on marine organisms, few studies empirically juxtapose biological responses to CO2 manipulations across functionally distinct primary producers, particularly benthic algae. Algal responses to OA may vary because increasing CO2 has the potential to fertilize photosynthesis but impair biomineralization. Using a series of repeated experiments on Palmyra Atoll, simulated OA effects were tested across a suite of ecologically important coral reef algae, including five fleshy and six calcareous species. Growth, calcification and photophysiology were measured for each species independently and metrics were combined from each experiment using a meta-analysis to examine overall trends across functional groups categorized as fleshy, upright calcareous, and crustose coralline algae (CCA). The magnitude of the effect of OA on algal growth response varied by species, but the direction was consistent within functional groups. Exposure to OA conditions generally enhanced growth in fleshy macroalgae, reduced net calcification in upright calcareous algae, and caused net dissolution in CCA. Additionally, three of the five fleshy seaweeds tested became reproductive upon exposure to OA conditions. There was no consistent effect of OA on algal photophysiology. Our study provides experimental evidence to support the hypothesis that OA will reduce the ability of calcareous algae to biomineralize. Further, we show that CO2 enrichment either will stimulate population or somatic growth in some species of fleshy macroalgae. Thus, our results suggest that projected OA conditions may favor non-calcifying algae and influence the relative dominance of fleshy macroalgae on reefs, perpetuating or exacerbating existing shifts in reef community structure.
Resumo:
The present study investigated the combined effects of ocean acidification, temperature, and salinity on growth and test degradation of Ammonia aomoriensis. This species is one of the dominant benthic foraminifera in near-coastal habitats of the southwestern Baltic Sea that can be particularly sensitive to changes in seawater carbonate chemistry. To assess potential responses to ocean acidification and climate change, we performed a fully crossed experiment involving three temperatures (8, 13, and 18°C), three salinities (15, 20, and 25) and four pCO2 levels (566, 1195, 2108, and 3843 µatm) for six weeks. Our results highlight a sensitive response of A. aomoriensis to undersaturated seawater with respect to calcite. The specimens continued to grow and increase their test diameter in treatments with pCO2 <1200 µatm, when Omega calc >1. Growth rates declined when pCO2 exceeded 1200 µatm (Omega calc <1). A significant reduction in test diameter and number of tests due to dissolution was observed below a critical Omega calc of 0.5. Elevated temperature (18°C) led to increased Omega calc, larger test diameter, and lower test degradation. Maximal growth was observed at 18°C. No significant relationship was observed between salinity and test growth. Lowered and undersaturated Omega calc, which results from increasing pCO2 in bottom waters, may cause a significant future decline of the population density of A. aomoriensis in its natural environment. At the same time, this effect might be partially compensated by temperature rise due to global warming.
Resumo:
Ocean acidification (OA) is anticipated to interact with the more frequently occurring hypoxic conditions in shallow coastal environments. These could exert extreme stress on the barnacle-dominated fouling communities. However, the interactive effect of these two emerging stressors on early-life stages of fouling organisms remains poorly studied. We investigated both the independent and interactive effect of low pH (7.6 vs. ambient 8.2) and low oxygen (LO; 3 mg/l vs. ambient 5 mg/l) from larval development through settlement (attachment and metamorphosis) and juvenile growth of the widespread fouling barnacle, Balanus amphitrite. In particular, we focused on the critical transition between planktonic and benthic phases to examine potential limiting factors (i.e. larval energy storage and the ability to perceive cues) that may restrain barnacle recruitment under the interactive stressors. LO significantly slowed naupliar development, while the interaction with low pH (LO-LP) seemed to alleviate the negative effect. However, 20-50% of the larvae became cyprid within 4 d post-hatching, regardless of treatment. Under the two stressors interaction (LO-LP), the barnacle larvae increased their feeding rate, which may explain why their energy reserves at competency were not different from any other treatment. In the absence of a settlement-inducing cue, a significantly lower percentage of cyprids (15% lower) settled in LO and LO-LP. The presence of an inducing cue, however, elevated attachment up to 50-70% equally across all treatments. Post-metamorphic growth was not altered, although the condition index was different between LO and LO-LP treatments, potentially indicating that less and/or weaker calcified structures were developed when the two stressors were experienced simultaneously. LO was the major driver for the responses observed and its interaction with low pH should be considered in future studies to avoid underestimating the sensitivity of biofouling species to OA and associated climate change stressors.
Combined impacts of elevated CO2 and anthropogenic noise on European sea bass (Dicentrarchus labrax)
Resumo:
Ocean acidification (OA) and anthropogenic noise are both known to cause stress and induce physiological and behavioural changes in fish, with consequences for fitness. OA is also predicted to reduce the ocean's capacity to absorb low-frequency sounds produced by human activity. Consequently, anthropogenic noise could propagate further under an increasingly acidic ocean. For the first time, this study investigated the independent and combined impacts of elevated carbon dioxide (CO2) and anthropogenic noise on the behaviour of a marine fish, the European sea bass (Dicentrarchus labrax). In a fully factorial experiment crossing two CO2 levels (current day and elevated) with two noise conditions (ambient and pile driving), D. labrax were exposed to four CO2/noise treatment combinations: 400 µatm/ambient, 1000 µatm/ambient, 400 µatm/pile-driving, and 1000 µatm/pile driving. Pile-driving noise increased ventilation rate (indicating stress) compared with ambient noise conditions. Elevated CO2 did not alter the ventilation rate response to noise. Furthermore, there was no interaction effect between elevated CO2 and pile-driving noise, suggesting that OA is unlikely to influence startle or ventilatory responses of fish to anthropogenic noise. However, effective management of anthropogenic noise could reduce fish stress, which may improve resilience to future stressors.
Resumo:
The study aimed to unravel the interaction between ocean acidification and solar ultraviolet radiation (UVR) in Chaetoceros curvisetus. Chaetoceros curvisetus cells were acclimated to high CO2 (HC, 1000 ppmv) and low CO2 concentration (control, LC, 380 ppmv) for 14 days. Cell density, specific growth rate and chlorophyll were measured. The acclimated cells were then exposed to PAB (photosynthetically active radiation (PAR) + UV-A + UV-B), PA (PAR + UV-A) or P (PAR) for 60 min. Photochemical efficiency (phi PSII), relative electron transport rate (rETR) and the recovery of ?PSII were determined. HC induced higher cell density and specific growth rate compared with LC. However, no difference was found in chlorophyll between HC and LC. Moreover, phi PSII and rETRs were higher under HC than LC in response to solar UVR. P exposure led to faster recovery of phi PSII, both under HC and LC, than PA and PAB exposure. It appeared that harmful effects of UVR on C. curvisetus could be counteracted by ocean acidification simulated by high CO2 when the effect of climate change is not beyond the tolerance of cells.
Resumo:
Effects of severe hypercapnia have been extensively studied in marine fishes, while knowledge on the impacts of moderately elevated CO2 levels and their combination with warming is scarce. Here we investigate ion regulation mechanisms and energy budget in gills from Atlantic cod acclimated long-term to elevated PCO2 levels (2500 µatm) and temperature (18 °C). Isolated perfused gill preparations established to determine gill thermal plasticity during acute exposures (10-22 °C) and in vivo costs of Na+/K+-ATPase activity, protein and RNA synthesis. Maximum enzyme capacities of F1Fo-ATPase, H+-ATPase and Na+/K+-ATPase were measured in vitro in crude gill homogenates. After whole animal acclimation to elevated PCO2 and/or warming, branchial oxygen consumption responded more strongly to acute temperature change. The fractions of gill respiration allocated to protein and RNA synthesis remained unchanged. In gills of fish CO2-exposed at both temperatures, energy turnover associated with Na+/K+-ATPase activity was reduced by 30% below rates of control fish. This contrasted in vitro capacities of Na+/K+-ATPase, which remained unchanged under elevated CO2 at 10 °C, and earlier studies which had found a strong upregulation under severe hypercapnia. F1Fo-ATPase capacities increased in hypercapnic gills at both temperatures, whereas Na+/K+ATPase and H+-ATPase capacities only increased in response to elevated CO2 and warming indicating the absence of thermal compensation under CO2. We conclude that in vivo ion regulatory energy demand is lowered under moderately elevated CO2 levels despite the stronger thermal response of total gill respiration and the upregulation of F1Fo-ATPase. This effect is maintained at elevated temperature.
Resumo:
An increasing number of studies have examined the effects of elevated carbon dioxide (CO2) and ocean acidification on marine fish, yet little is known about the effects on large pelagic fish. We tested the effects of elevated CO2 on the early life history development and behaviour of yellowtail kingfish, Seriola lalandi. Eggs and larvae were reared in current day control (450 µatm) and two elevated CO2 treatments for a total of 6 d, from 12 h post-fertilization until 3 d post-hatching (dph). Elevated CO2 treatments matched projections for the open ocean by the year 2100 under RCP 8.5 (880 µatm CO2) and a higher level (1700 µatm CO2) relevant to upwelling zones where pelagic fish often spawn. There was no effect of elevated CO2 on survival to hatching or 3 dph. Oil globule diameter decreased with an increasing CO2 level, indicating potential effects of elevated CO2 on energy utilization of newly hatched larvae, but other morphometric traits did not differ among treatments. Contrary to expectations, there were no effects of elevated CO2 on larval behaviour. Activity level, startle response, and phototaxis did not differ among treatments. Our results contrast with findings for reef fish, where a wide range of sensory and behavioural effects have been reported. We hypothesize that the absence of behavioural effects in 3 dph yellowtail kingfish is due to the early developmental state of newly hatched pelagic fish. Behavioural effects of high CO2 may not occur until larvae commence branchial acid-base regulation when the gills develop; however, further studies are required to test this hypothesis. Our results suggest that the early stages of kingfish development are tolerant to rising CO2 levels in the ocean.
Resumo:
The vertical density gradients in the Nordic Seas are crucial for the preconditioning of the surface water to thermohaline sinking in winter. These gradients can be reconstructed from paired oxygen isotope data in tests of different species of planktonic foraminifera, the isotopic signatures of which represent different calcification depths in the water column. Comparison of d18O values from foraminiferal tests in plankton hauls, sediment traps, and nearby core top samples with the calculated d18Ocalcite profile of the water column revealed species-specific d18O vital effects and the role of bioturbational admixture of subfossil specimens into the surface sediment. On the basis of core top samples obtained along a west-east transect across various hydrographic regions of the Nordic Seas, d18O values of Turborotalita quinqueloba document apparent calcification depths within the pycnocline at 25-75 m water depth. The isotopic signatures of Neogloboquadrina pachyderma (s) reflect water masses near and well below the pycnocline between 70 and 250 m off Norway, where the Atlantic inflow leads to thermal stratification. Here, temperatures in the calcification depth of N. pachyderma (s) differ from sea surface temperature by approximately -2.5°C. In contrast, N. pachyderma (s) calcifies very close to the sea surface (20-50 m) in the Arctic domain of the western Nordic Seas. However, further west N. pachyderma (s) prefers somewhat deeper, more saline water at 70-130 m well below the halocline that confines the low saline East Greenland Current. This implies that the d18O values of N. pachyderma (s) do not fully reflect the freshwater proportion in surface water and that any reconstruction of past meltwater plumes based on d18O is too conservative, because it overestimates sea surface salinity. Minimum d18O differences (<0.2per mil) between N. pachyderma (s) and T. quinqueloba may serve as proxy for sea regions with dominant haline and absent thermal stratification, whereas thermal stratification leads to d18O differences of >0.4 to >1.5per mil.
Resumo:
Although ocean acidification is expected to impact (bio)calcification by decreasing the seawater carbonate ion concentration, [CO3]2-, there exists evidence of non-uniform response of marine calcifying plankton to low seawater [CO3]2-. This raises questions on the role of environmental factors other than acidification and on the complex physiological responses behind calcification. Here we investigate the synergistic effect of multiple environmental parameters, including temperature, nutrient (nitrate and phosphate) availability, and seawater carbonate chemistry on the coccolith calcite mass of the cosmopolitan coccolithophore Emiliania huxleyi, the most abundant species in the world ocean. We use a suite of surface (late Holocene) sediment samples from the South Atlantic and southwestern Indian Ocean taken from depths lying well above the modern lysocline. The coccolith calcite mass in our results presents a latitudinal distribution pattern that mimics the main oceanographic features, thereby pointing to the potential importance of phosphorus and temperature in determining coccolith mass by affecting primary calcification and possibly driving the E. huxleyi morphotype distribution. This evidence does not necessarily argue against the potentially important role of the rapidly changing seawater carbonate chemistry in the future, when unabated fossil fuel burning will likely perturb ocean chemistry beyond a critical point. Rather our study highlights the importance of evaluating the combined effect of several environmental stressors on calcifying organisms to project their physiological response(s) in a high CO2 world and improve interpretation of paleorecords.
Resumo:
Apatite (U-Th-Sm)/He (AHe) thermochronology is increasingly used for reconstructing geodynamic processes of the upper crust and the surface. Results of AHe thermochronology, however, are often in conflict with apatite fission track (AFT) thermochronology, yielding an inverted age-relationship with AHe dates older than AFT dates of the same samples. This effect is mainly explained by radiation damage of apatite, either impeding He diffusion or causing non-thermal annealing of fission tracks. So far, systematic age inversions have only been described for old and slowly cooled terranes, whereas for young and rapidly cooled samples 'too old' AHe dates are usually explained by the presence of undetected U and/or Th-rich micro-inclusions. We report apatite (U-Th-Sm)/He results for rapidly cooled volcanogenic samples deposited in a deep ocean environment with a relatively simple post-depositional thermal history. Robust age constraints are provided independently through sample biostratigraphy. All studied apatites have low U contents (< 5 ppm on average). While AFT dates are largely in agreement with deposition ages, most AHe dates are too old. For leg 43, where deposition age of sampled sediment is 26.5-29.5 Ma, alpha-corrected average AHe dates are up to 45 Ma, indicating overestimations of AHe dates up to 50%. This is explained by He implantation from surrounding host U-Th rich sedimentary components and it is shown that AHe dates can be "corrected" by mechanically abrading the outer part of grains. We recommend that particularly for low U-Th-apatites the possibility of He implantation should be carefully checked before considering the degree to which the alpha-ejection correction should be applied.
Resumo:
The present data publication provides permanent links to original and updated versions of validated data files. The data files include properties of seawater, particulate matter and dissolved matter from physical, optical and imaging sensors mounted on a vertical sampling system (Rosette) used during the 2009-2013 tara Oceans Expedition. It comprised 2 pairs of conductivity and temperature sensors (SEABIRD components), and a complete set of WEtLabs optical sensors, including chrorophyll and CDOM fluorometers, a 25 cm transmissiometer, and a one-wavelength backscatter meter. In addition, a SATLANTIC ISUS nitrate sensor and a Hydroptic Underwater Vision Profiler (UVP) were mounted on the rosette. In the Arctic Ocean and Arctic Seas (2013), a second oxygen sensor (SBE43) and a four frequency Aquascat acoustic profiler were added. The system was powered on specific Li-Ion batteries and data were self-recorded at 24HZ. Sensors have all been factory calibrated before, during and after the four year program. Oxygen was validated using climatologies (WOA09). Nitrate and Fluorescence data were adjusted with discrete measurements from Niskin bottles mounted on the Rosette, and optical darks were performed monthly on board. A total of 839 quality checked vertical profiles were made during the tara Oceans expedition 2009-2013.
Resumo:
The anthropogenic release of carbon dioxide (CO2) into the atmosphere leads to an increase in the CO2 partial pressure (pCO2) in the ocean, which may reach 950 ?atm by the end of the 21st century. The resulting hypercapnia (high pCO2) and decreasing pH ("ocean acidification") are expected to have appreciable effects on water-breathing organisms, especially on their early-life stages. For organisms like squid that lay their eggs in coastal areas where the embryo and then paralarva are also exposed to metal contamination, there is a need for information on how ocean acidification may influence trace element bioaccumulation during their development. In this study, we investigated the effects of enhanced levels of pCO2 (380, 850 and 1500 ?atm corresponding to pHT of 8.1, 7.85 and 7.60) on the accumulation of dissolved 110mAg, 109Cd, 57Co, 203Hg, 54Mn and 65Zn radiotracers in the whole egg strand and in the different compartments of the egg of Loligo vulgaris during the embryonic development and also in hatchlings during their first days of paralarval life. Retention properties of the eggshell for 110mAg, 203Hg and 65Zn were affected by the pCO2 treatments. In the embryo, increasing seawater pCO2 enhanced the uptake of both 110mAg and 65Zn while 203Hg showed a minimum concentration factor (CF) at the intermediate pCO2. 65Zn incorporation in statoliths also increased with increasing pCO2. Conversely, uptake of 109Cd and 54Mn in the embryo decreased as a function of increasing pCO2. Only the accumulation of 57Co in embryos was not affected by increasing pCO2. In paralarvae, the CF of 110mAg increased with increasing pCO2, whereas the 57Co CF was reduced at the highest pCO2 and 203Hg showed a maximal uptake rate at the intermediate pCO2. 54Mn and 65Zn accumulation in paralarvae were not significantly modified by hypercapnic conditions. Our results suggest a combined effect of pH on the adsorption and protective properties of the eggshell and of hypercapnia on the metabolism of embryo and paralarvae, both causing changes to the accumulation of metals in the tissues of L. vulgaris.