242 resultados para (K37 K38) n TOC
Resumo:
One of the primary prerequisites for the application of organic proxies is that they should not be substantially affected by diagenesis. However, studies have shown that oxic degradation of biomarker lipids can affect their relative distribution. We tested the diagenetic stability of the UK'37 and TEX86 palaeothermometers upon long term oxygen exposure. For this purpose, we studied the distributions of alkenones and glycerol dialkyl glycerol tetraethers (GDGTs) in different sections of turbidites at the Madeira Abyssal Plain (MAP) that experienced different degrees of oxygen exposure. Sediments were deposited anoxically on the shelf and then transported by turbidity currents to the MAP, which has oxic bottom water. This resulted in partial degradation of the turbidite organic matter as a result of long term exposure to oxic bottom water. Concentrations of GDGTs and alkenones were reduced by one to two orders of magnitude in the oxidized parts of the turbidites compared to the unoxidized parts, indicating substantial degradation. High-resolution analysis of the Pleistocene F-turbidite showed that the UK'37 index of long chain alkenones increased only slightly (0.01, corresponding to <0.5 °C) in the oxidized part of the turbidite, suggesting minor preferential degradation of the C37:3 alkenone, in agreement with previous studies. TEX86 values showed a small increase (0.02, corresponding to ~2 °C) in the F-turbidite, like UK'37 , while for other Pliocene/Miocene turbidites it either remained unchanged or decreased substantially (up to 0.06, corresponding to ~6 °C). Previous observations showed that the BIT index, a proxy for the contribution of soil organic matter to total organic carbon, was always substantially higher in the oxidized part in all the turbidites, as a result of preferential degradation of marine-derived GDGTs. This relative increase in soil-derived GDGTs affects TEX86, as the isoprenoid GDGT distribution on the continent can be quite different from that in the marine environment. Our results indicate that the organic proxies are affected by long term oxic degradation to different extents; this should be taken into account when applying these proxies in palaeoceanographic studies of sediments which have been exposed to prolonged oxic degradation.
Resumo:
Radiocarbon stratigraphy is an essential tool for high resolution paleoceanographic studies. Age models based on radiocarbon ages of foraminifera are commonly applied to a wide range of geochemical studies, including the investigation of temporal leads and lags. The critical assumption is that temporal coupling between foraminifera and other sediment constituents, including specific molecular organic compounds (biomarkers) of marine phytoplankton, e.g. alkenones, is maintained in the sediments. To test this critical assumption in the Benguela upwelling area, we have determined radiocarbon ages of total C37-C39 alkenones in 20 samples from two gravity cores and three multicorer cores. The cores were retrieved from the continental shelf and slope off Namibia, and samples were taken from Holocene, deglacial and Last Glacial Maximum core sections. The alkenone radiocarbon ages were compared to those of planktic foraminifera, total organic carbon, fatty acids and fine grained carbonates from the same samples. Interestingly, the ages of alkenones were 1000 to 4500 yr older than those of foraminifera in all samples. Such age differences may be the result of different processes: Bioturbation associated with grain size effects, lateral advection of (recycled) material and redeposition of sediment on upper continental slopes due to currents or tidal movement are examples for such processes. Based on the results of this study, the age offsets between foraminifera and alkenones in sediments from the upper continental slope off Namibia most probably do not result from particle-selective bioturbation processes. Resuspension of organic particles in response to tidal movement of bottom waters with velocities up to 25 cm/s recorded near the core sites is the more likely explanation. Our results imply that age control established using radiocarbon measurements of foraminifera may be inadequate for the interpretation of alkenone-based proxy data. Observed temporal leads and lags between foraminifera based data and data derived from alkenone measurements may therefore be secondary signals, i.e. the result of processes associated with particle settling and biological activity.
Resumo:
We present high-resolution records of sedimentary nitrogen (d15Nbulk) and carbon isotope ratios (d13Cbulk) from piston core SO201-2-85KL located in the western Bering Sea. The records reflect changes in surface nitrate utilization and terrestrial organic matter contribution in submillennial resolution that span the last 180 kyr. The d15Nbulk record is characterized by a minimum during the penultimate interglacial indicating low nitrate utilization (~62-80%) despite the relatively high export production inferred from opal concentrations along with a significant reduction in the terrestrial organic matter fraction (mterr). This suggests that the consumption of the nitrate pool at our site was incomplete and even more reduced than today (~84%). d15Nbulk increases from Marine Isotope Stage (MIS) 5.4 and culminates during the Last Glacial Maximum, which indicates that nitrate utilization in the Bering Sea was raised during cold intervals (MIS 5.4, 5.2, 4) and almost complete during MIS 3 and 2 (~93-100%). This is in agreement with previous hypotheses suggesting that stronger glacial stratification reduced the nutrient supply from the subeuphotic zone, thereby increasing the iron-to-nutrient ratio and therefore the nitrate utilization in the mixed surface layer. Large variations in d15Nbulk were also recorded from 180 to 130 ka BP (MIS 6), indicating a potential link to insolation and sea-level forcing and its related feedbacks. Millennial-scale oscillations were observed in d15Nbulk and d13Cbulk that might be related to Greenland interstadials.
Resumo:
The initiation of the Benguela upwelling has been dated to the late Miocene, but estimates of its sea surface temperature evolution are not available. This study presents data from Ocean Drilling Program (ODP) Site 1085 recovered from the southern Cape Basin. Samples of the middle Miocene to Pliocene were analyzed for alkenone-based (UK'37, SSTUK) and glycerol dialkyl glycerol tetraether (GDGT) based (TEX86, TempTEX) water temperature proxies. In concordance with global cooling during the Miocene, SSTUK and TempTEX exhibit a decline of about 8°C and 16°C, respectively. The temperature trends suggest an inflow of cold Antarctic waters triggered by Antarctic ice sheet expansion and intensification of Southern Hemisphere southeasterly winds. A temperature offset between both proxies developed with the onset of upwelling, which can be explained by differences in habitat: alkenone-producing phytoplankton live in the euphotic zone and record sea surface temperatures, while GDGT-producing Thaumarchaeota are displaced to colder subsurface waters in upwelling-influenced areas and record subsurface water temperatures. We suggest that variations in subsurface water temperatures were driven by advection of cold Antarctic waters and thermocline adjustments that were due to changes in North Atlantic deep water formation. A decline in surface temperatures, an increased offset between temperature proxies, and an increase in primary productivity suggest the establishment of the Benguela upwelling at 10 Ma. During the Messinian Salinity Crisis, between 7 and 5 Ma, surface and subsurface temperature estimates became similar, likely because of a strong reduction in Atlantic overturning circulation, while high total organic carbon contents suggest a "biogenic bloom." In the Pliocene the offset between the temperature estimates and the cooling trend was reestablished.
Resumo:
The redox stratification of bottom sediments in Kandalaksha Bay, White Sea, is characterized by elevated concentrations of Mn (3-5%) and Fe (7.5%) in the uppermost layer, which is two orders of magnitude and one and a half times, respectively, higher than the average concentrations of these elements in the Earth's crust. The high concentrations of organic matter (Corg = 1-2%) in these sediments cannot maintain (because of its low reaction activity) the sulfate-reducing process (the concentration of sulfide Fe is no higher than 0.6%). The clearest manifestation of diagenesis is the extremely high Mn2+ concentration in the silt water (>500 µM), which causes its flux into the bottom water, oxidation in contact with oxygen, and the synthesis of MnO2 oxy-hydroxide enriching the surface layer of the sediments. Such migrations are much less typical of Fe. Upon oxygen exhaustion in the uppermost layer of the sediments, the synthesized oxyhydroxides (MnO2 and FeOOH) serve as oxidizers of organic matter during anaerobic diagenesis. The calculated diffusion-driven Mn flux from the sediments (280 µM/m**2 day) and corresponding amount of forming Mn oxyhydrate as compared to opposite oxygen flux to sediments (1-10 mM/m**2 day) indicates that >10% organic matter in the surface layer of the sediments can be oxidized with the participation of MnO2. The roles of other oxidizers of organic matter (FeOOH and SO4**2-) becomes discernible at deeper levels of the sediments. The detailed calculation of the balance of reducing processes testifies to the higher consumption of organic matter during the diagenesis of surface sediments than it follows from the direct determination of Corg. The most active diagenetic redox processes terminate at depths of 25-50 cm. Layers enriched in Mn at deeper levels are metastable relicts of its surface accumulation and are prone to gradual dissemination.
Resumo:
Uranium content of in phosphorites from Pacific seamounts does not exceed 10ppm; it is significantly lower than in phosphorites from submarine continental margins and deposits on land. Phosphate is not the main carrier of uranium, which is inhomogeneously distributed in ferromanganese hydroxide-, phosphate-, silicate- and carbonate materials. Uranium associated with phosphate is not isomorphic admixture. Uranium occurs in rocks in fine particles of unknown composition. Ultramicroscopic inclusions of U(IV) oxides have been also found.