708 resultados para Water mass variations


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Agulhas Bank region, south of Africa, is an oceanographically important and complex area. The leakage of warm saline Indian Ocean water into the South Atlantic around the southern tip of Africa is a crucial factor in the global thermohaline circulation. Foraminiferal assemblage, stable isotope and sedimentological data from the top 10 m of core MD962080, recovered from the western Agulhas Bank Slope, are used to indicate changes in water mass circulation in the southeastern South Atlantic for the last 450 kyr. Sedimentological and planktonic foraminiferal data give clear signals of cold water intrusions. The benthic stable isotope record provides the stratigraphic framework and indicates that the last four climatic cycles are represented (i.e. down to marine isotope stage (MIS) 12). The planktonic foraminiferal assemblages bear a clear transitional to subantarctic character with Globorotalia inflata and Neogloboquadrina pachyderma (dextral) being the dominant taxa. Input of cold, subantarctic waters into the region by means of leakage through the Subtropical Convergence, as part of Agulhas ring shedding, and a general cooling of surface waters is suggested by increased occurrence of the subantarctic assemblage during glacial periods. Variable input of Indian Ocean waters via the Agulhas Current is indicated by the presence of tropical/subtropical planktonic foraminiferal species Globoquadrina dutertrei, Globigerinoides ruber (alba) and Globorotalia menardii with maximum leakage occurring at glacial terminations. The continuous presence of G. menardii throughout the core suggests that the exchange of water from the South Indian Ocean to the South Atlantic Ocean was never entirely obstructed in the last 450 kyr. The benthic carbon isotope record and sediment textural data reflect a change in bottom water masses over the core location from North Atlantic Deep Water to Upper Southern Component Water. Planktonic foraminiferal assemblages and sediment composition indicate a profound change in surface water conditions over the core site approximately 200-250 kyr BP, during MIS 7, from mixed subantarctic and transitional water masses to overall warmer surface water conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Depth habitats of 56 late Cretaceous planktonic foraminiferal species from cool and warm climate modes were determined based on stable isotope analyses of deep-sea samples from the equatorial Pacific DSDP Sites 577A and 463, and South Atlantic DSDP Site 525A. The following conclusions can be reached: Planoglobulina multicamerata (De Klasz) and Heterohelix rajagopalani (Govindan) occupied the deepest plankton habitats, followed by Abathomphalus mayaroensis (Bolli), Globotruncanella havanensis (Voorwijk), Gublerina cuvillieri Kikoine, and Laeviheterohelix glabrans (Cushman) also at subthermocline depth. Most keeled globotruncanids, and possibly Globigerinelliodes and Racemiguembelina species, lived at or within the thermocline layer. Heterohelix globulosa (Ehrenberg) and Rugoglobigerina, Pseudotextularia and Planoglobulina occupied the subsurface depth of the mixed layer, and Pseudoguembelina species inhabited the surface mixed layer. However, depth ranking of some species varied depending on warm or cool climate modes, and late Campanian or Maastrichtian age. For example, most keeled globotruncanids occupied similar shallow subsurface habitats as Rugoglobigerina during the warm late Campanian, but occupied the deeper thermocline layer during cool climatic intervals. Two distinct types of "vital effect" mechanisms reflecting photosymbiosis and respiration effects can be recognized by the exceptional delta13C signals of some species. (1) Photosymbiosis is implied by the repetitive pattern of relatively enriched delta13C values of Racemiguembelina (strongest), Planoglobulina, Rosita and Rugoglobigerina species, Pseudoguembelina excolata (weakest). (2) Enriched respiration 12C products are recognized in A. mayaroensis, Gublerina acuta De Klasz, and Heterohelix planata (Cushman). Isotopic trends between samples suggest that photosymbiotic activities varied between localities or during different climate modes, and may have ceased under certain environmental conditions. The appearance of most photosymbiotic species in the late Maastrichtian suggests oligotrophic conditions associated with increased water-mass stratification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Site 1085 is located on the continental rise of southwest Africa at a water depth of 1713 m off the mouth of the Orange River in the Cape Basin. The site is part of the suite of locations drilled during Leg 175 on the Africa margin to reconstruct the onset and evolution of the elevated biological productivity associated with the Benguela Current upwelling system (Wefer, Berger, Richter, et al., 1998, doi:10.2973/odp.proc.ir.175.1998). Three sediment samples were collected per section from Cores 170-1085A-28H through 45X (251-419 mbsf) to provide a survey of the sediment record of paleoproductivity from the middle late Miocene to the early Pliocene (~8.7-4.7 Ma), which is a period that includes the postulated northward migration and intensification of the Benguela Current and the establishment of modern circulation off southwest Africa (Siesser, 1980; Diester-Haass et al., 1992; Berger et al., 1998). Core 170-1085A-30H (270-279 mbsf) had essentially no recovery; this coring gap was filled with samples from Cores 170-1085B-29H and 30H (261-280 mbsf). The results of measurements of multiple paleoproductivity proxies are summarized in this report. Included in these proxies are the radiolarian, foraminiferal, and echinoderm components of the sand-sized sediment fraction. Opal skeletons of radiolarians (no diatoms were found) relate to paleoproductivity and water mass chemistry (Summerhayes et al., 1995, doi:10.1016/0079-6611(95)00008-5; Lange and Berger, 1993, doi:10.2973/odp.proc.sr.130.011.1993; Nelson et al., 1995, doi:10.1029/95GB01070). The accumulation rates of benthic foraminifers are useful proxies for paleoproductivity (Herguera and Berger, 1991, doi:10.1130/0091-7613(1991)019<1173:PFBFAG>2.3.CO;2; Nees, 1997, doi:10.1016/S0031-0182(97)00012-6; Schmiedl and Mackensen, 1997, doi:10.1016/S0031-0182(96)00137-X) because these fauna subsist on organic matter exported from the photic zone. Echinoderms also depend mainly on food supply from the photic zone (Gooday and Turley, 1990), and their accumulation rates are an additional paleoproductivity proxy. Concentrations of calcium carbonate (CaCO3) and organic carbon in sediment samples are fundamental measures of paleoproductivity (e.g., Meyers, 1997, doi:10.1016/S0146-6380(97)00049-1). In addition, organic matter atomic carbon/nitrogen (C/N) ratios and delta13C values can be used to infer the origin of the organic matter contained within the sediments and to explore some of the factors affecting its preservation and accumulation (Meyers, 1994, doi:10.1016/0009-2541(94)90059-0).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Bulk sedimentary nitrogen isotope (d15Ntot) data have been generated from Lower Jurassic black, carbon-rich shales in the British Isles and northern Italy deposited during the early Toarcian oceanic anoxic event. A pronounced positive d15Ntot excursion through the exaratum Subzone of the falciferum Zone (defined by characteristic ammonites in the British Isles) broadly correlates with a relative maximum in weight percent total organic carbon and, in some sections, with a negative d13Corg excursion. Upwelling of a deoxygenated water mass that had undergone partial denitrification is the likely explanation for relative enrichment of d15Ntot, and parallels may be drawn with Quaternary sediments of the Arabian Sea, Gulf of California, and northwest Mexican margin. The development of Early Toarcian suboxic water masses and consequent partial denitrification is attributed to increases in organic productivity. Approximately coincident phenomena include the following: a relative climatic optimum, realignment of major oceanic current systems, and a possible release of methane gas hydrates from continental margin sediments early in the history of the oceanic anoxic event.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cores from Sites 1135, 1136, and 1138 of Ocean Drilling Program Leg 183 to the Kerguelen Plateau (KP) provide the most complete Paleocene and Eocene sections yet recovered from the southern Indian Ocean. These nannofossil-foraminifer oozes and chalks provide an opportunity to study southern high-latitude biostratigraphic and paleoceanographic events, which is the primary subject of this paper. In addition, a stable isotope profile was established across the Cretaceous/Tertiary (K/T) boundary at Site 1138. An apparently complete K/T boundary was recovered at Site 1138 in terms of assemblage succession, isotopic signature, and reworking of older (Cretaceous) nannofossil taxa. There is a significant color change, a negative carbon isotope shift, and nannofossil turnover. The placement of the boundary based on these criteria, however, is not in agreement with the available shipboard paleomagnetic stratigraphy. We await shore-based paleomagnetic study to confirm or deny those preliminary results. The Paleocene nannofossil assemblage is, in general, characteristic of the high latitudes with abundant Chiasmolithus, Prinsius, and Toweius. Placed in context with other Southern Ocean sites, the biogeography of Hornibrookina indicates the presence of some type of water mass boundary over the KP during the earliest Paleocene. This boundary disappeared by the late Paleocene, however, when there was an influx of warm-water discoasters, sphenoliths, and fasciculiths. This not only indicates that during much of the late Paleocene water temperatures were relatively equable, but preliminary floral and stable isotope analyses also indicate that a relatively complete record of the late Paleocene Thermal Maximum event was recovered at Site 1135. It was only at the beginning of the middle Eocene that water temperatures began to decline and the nannofossil assemblage became dominated by cool-water species while discoaster and sphenolith abundances and diversity were dramatically reduced. One new taxonomic combination is proposed, Heliolithus robustus Arney, Ladner, and Wise.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Early Miocene to Quaternary benthic foraminifers have been quantitatively studied (>63 ?m size fraction) in a southwest Pacific traverse of DSDP sites at depths from about 1300 to 3200 m down the Lord Howe Rise (Site 590,1299 m; Site 591, 2131 m; Site 206, 3196 m). Benthic foraminiferal species smaller than 150 µm are by far dominant in the samples, averaging from 78 to 89% of the total benthic foraminiferal assemblages in the three sites examined. Although about 150 benthic foraminiferal species or taxonomic groups have been identified, only a few species dominate the assemblages. These dominant species include Epistominella exigua, E. rotunda, and Globocassidulina subglobosa, which prevail in the three sites, and Oridorsalis umbonatus, E. umbonifera, and Cassidulina carinata, which occur usually in frequencies of between 10 and 30%. Faunal changes in Neogene benthic foraminiferal assemblages are not similar in each of the three sites, but faunal successions are most similar between the two shallowest sites. The deepest site differs in composition and distribution of dominant species. There are three intervals during which the most important changes occur in benthic foraminiferal assemblages: the early middle Miocene (14 Ma; the Orbulina suturalis Zone and the Globorotalia fohsi s.l. Zone); the late Miocene (6 Ma; the Globigerina nepenthes Zone) and near the Pliocene/Pleistocene boundary at about 2 Ma. A Q-mode factor analysis of the faunal data has assisted in recognizing assemblage changes during the Neogene at each of the sites. Early Miocene assemblages were dominated by Globocassidulina subglobosa at Site 590 (1299 m), by G. subglobosa and Oridorsalis umbonatus at Site 591 (2131 m), and by G. subglobosa, E. exigua, and Bolivina pusilla at Site 206 (3196 m). In the early middle Miocene at Sites 590 and 591, a marked increase occurred in the frequencies of E. exigua. Epistominella exigua reached maximum abundance in the early Miocene in the deeper Site 206, and in the middle and early late Miocene in the shallower Sites 590 and 591. In the late Miocene, a spike occurred in the frequencies of E. umbonifera in Site 206, whereas the dominant species changed from E. exigua to E. rotunda at Site 590. Latest Miocene to late Pliocene assemblages were dominated by E. rotunda at Site 590, by E. exigua at Site 591, and by G. subglobosa-E. exigua (early Pliocene) and E. rotunda-E. exigua (late Pliocene) at Site 206. At the Pliocene/Pleistocene boundary, E. exigua temporarily diminished in importance at Sites 591 and 206. Quaternary assemblages were dominated by E. rotunda and Cassidulina carinata at Site 590, by E. rotunda at Site 591, and by E. exigua at Site 206. These major faunal changes are all associated with known major paleoceanographic events-the middle Miocene development of the Antarctic ice sheet; the latest Miocene global cooling and increased polar glaciation; and the onset of quasiperiodic glaciation of the Northern Hemisphere. These major paleoceanographic events undoubtedly had a profound effect on the intermediate and deep water mass structure of the Tasman Sea as recorded by changes in benthic foraminiferal assemblages.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sediment samples taken at close intervals across four major unconformities (middle Miocene/upper Miocene, lower Oligocene/upper Oligocene, lower Eocene/upper Eocene, lower Paleocene/upper Paleocene) at DSDP-IPOD Site 548, Goban Spur, reveal that coeval biostratigraphic gaps, sediment discontinuities, and seismic unconformities coincide with postulated low stands of sea level. Foraminiferal, lithic, and isotopic analyses demonstrate that environments began to shift prior to periods of marine erosion, and that sedimentation resumed in the form of turbidites derived from nearby upper-slope sources. The unconformities appear to have developed where a water-mass boundary intersected the continental slope, rhythmically crossing the drill site in concert with sea-level rise and fall.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantitative characteristics for rates of diagenetic processes in the upper (0-30 cm) layer of sedimentary deposits in the area of the Spitsbergen (Svalbard) Archipelago (78°-80°N) were obtained by lithologo-geochemical, radioisotope (35S, 14C), and stable isotope (d34S, d13C) studies. It was proved that rates of diagenetic processes in polar deposits at 123-395 m depth affected by the East Spitsbergen ''warm'' current are mostly determined by bioproductivity and are commensurate with rates of processes in shelf deposits of temperate latitudes. High contents of migratory methane (up to 263 ml/dm**3) and isotopically-light organic carbon (Corg, d13C = -30 per mil PDB) were found in the 1 m layer of shelf deposits (at 123 m sea depth) with low bacterial in situ production of methane. It was shown that methane is not utilized in the deposits by the methanotrophic bacterial community and it may be supplied to the water mass and, probably, to the atmosphere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Presently, the intermediate depths of the North Atlantic Ocean are occupied by a great lens of warm, saline water whose source is the Mediterranean Sea. This water flows both westward and northward, finally entering the Norwegian Sea where it may contribute to the formation of North Atlantic Deep Water. The Late Neogene history of Mediterranean Outflow in the Atlantic can be monitored at DSDP-IPOD Site 548 on the continental slope Southwest of Ireland using benthic Foraminifera oxygen isotope values. Isotopic data from 154 samples indicate that Mediterranean water was absent from the mid-depth North Atlantic from 3.4 to 3.2 Ma ago. However, at about 2.9 Ma ago the isotopic values at Site 548 diverge from those recorded from the deep North Atlantic and they can be interpreted to indicate the appearance of a new water mass, possibly Mediterranean water, in the North Atlantic water column. This appearance may be related to climatic changes that occurred around the Mediterranean Basin at about 2.9 Ma ago. The analysis of 189 samples for grain-size distributions shows that a significant increase in the silt-size fraction occurs at the same level that isotopic analysis indicates a change in bottom waters at Site 548. The grainsize data support the hypothesis that mid-depth water-mass changes occurred at about 2.9 Ma ago.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pliocene changes in the vertical water mass structure of the western South Atlantic are inferred from changes in benthic foraminiferal assemblages and stable isotopes from DSDP Holes 516A, 517, and 518. Factor analysis of 34 samples from Site 518 reveals three distinct benthic foraminiferal assemblages that have been associated with specific subsurface water masses in the modern ocean. These include a Nuttalides umbonifera assemblage (Factor 1) associated with Antarctic Bottom Water (AABW), a Globocassidulina subglobosa-Uvigerina peregrina assemblage (Factor 2) associated with Circumpolar Deep Water (CPDW), and an Oridorsalis umbonatus-Epistominella exigua assemblage associated with North Atlantic Deep Water (NADW). Bathymetric gradients in d13C between Holes 516A (1313 m), 517 (2963 m), and 518 (3944 m) are calculated whenever possible to monitor the degree of similarity and/or difference in the apparent oxygen utilization (AOU) of water masses located at these depths during the Pliocene. Changes in bathymetric d13C gradients coupled with benthic foraminiferal assemblages record fundamental changes in the vertical water mass structure of the Vema Channel during the Pliocene from 4.1 to 2.7 Ma. At Site 518, the interval from 4.1 to 3.6 Ma is dominated by the N. umbonifera (Factor 1) and O. umbonatus-E. exigua (Factor 3) assemblages. The d13C gradient between Holes 518 (3944 m) and 516A (1313 m) undergoes rapid oscillations during this interval though no permanent increase in the gradient is observed. However, d13C values at Site 518 are clearly lighter during this interval. These conditions may be related to increased bottom water activity associated with the re-establishment of the West Antarctic Ice Sheet in the late Gilbert Chron (-4.2 to 3.6 Ma) (Osborn et al., 1982). The interval from 3.6 to 3.2 Ma is marked by a dominance of the G. subglobosa-U. peregrina (Factor 2) assemblage and lack of a strong d13C gradient between Holes 518 (3944 m) and 516A (1313 m). We suggest that shallow circumpolar waters expanded to depths of a least 3944 m (Site 518) during this time. The most profound faunal and isotopic change occurs at 3.2 Ma, and is marked by dominance of the N. umbonifera (Factor 1) and O. umbonatus-E. exigua (Factor 3) assemblages, a 1.1 per mil enrichment in d18O, and a large negative increase in the d13C gradient between Holes 518 and 516A. These changes at Site 518 record the vertical displacement of circumpolar waters by AABW and NADW. This change in vertical water mass structure at 3.2 Ma was probably related to a global cooling event and/or final closure of the Central American seaway. A comparison of the present-day d13C structure of the Vema Channel with a reconstruction between 3.2 and 2.7 Ma indicates that circulation patterns during this late Pliocene interval were similar to those of the modern western South Atlantic.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To assess the relationship of radiolarian production, species distribution in water and surface sediment to water-mass characteristics, biological productivity and export regimes in the Sea of Okhotsk (SOk) we accomplished a quantitative analysis of radiolarian assemblages obtained from 35 surface-sediment samples and 115 plankton samples recording the radiolarian depth distribution in the upper 1000 m of the water column at 23 locations. This study augments the knowledge on the autecological demands of radiolarians dwelling in a specific hydrographic and biological environment, and extracts new information on the significance of radiolarians for the assessment of past oceanographic and climatic development in high latitudes. Highest radiolarian accumulation rates and seasonal radiolarian standing stocks are encountered in the western part of the SOk close to Sakhalin, marking the environmental conditions in this area as most favorable for radiolarian production. Maximum standing stocks occur during summer, indicating that the radiolarian signal preserved in the sediment record is mainly produced during this season when the mesopelagic biomass is at highest activity. We identified seven radiolarian species and groups related to specific water-mass characteristics, depth habitats, and productivity regimes. Of those, Dictyophimus hirundo and Cycladophora davisiana are most prominent in the Sea of Okhotsk Intermediate Water (200-1000 m), the latter representing an indicator of the occurrence of cold and well ventilated intermediate/deep water and enhanced export of organic matter from a highly productive ocean surface. While Antarctissa (?) sp. 1 is typically related to the cold-water Sea of Okhotsk Dicothermal Layer (SODL), ranging between 50 and 150 m water depth, the surface waters above the SODL affected by strong seasonal variability are inhabited predominantly by taxa belonging to the Spongodiscidae, having a broad environmental tolerance. Taxa only found in the sediment record show that the plankton study did not cover all assemblages occurring in the modern SOk. This accounts for an assemblage restricted to the western Kurile Basin and apparently related to environmental conditions influenced by North Pacific and Japan Sea waters. Other important taxa include species of the Plagoniidae group, representing the most prominent contributors to the SOk plankton and surface sediments. These radiolarians show a more opportunistic occurrence and are indicative of high nutrient supply in a hydrographic environment characterized by pronounced stratification enhancing heterotrophic activity and phytodetritus export.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

According to monitoring data gained between 1982-1992, macrobenthos in the Tiksi Bay is characterized by low indices of the total abundance, biomass and taxonomic diversity. 30 macrobenthic species have been recorded in the Tiksi Bay. The bottom biocenoses within the estuarine-arctic water mass consist of widespread eurybiontic boreal-arctic and brackish-water species. The maximal number of species was observed at a depth of 8.5 m. The maximum biomass was recorded on muddy grounds. The studied bottom fauna is characterized by a high population density (from 1160-600 ind/m**2) and low biomass of 15.5-22.4 g/m**2. The predominant benthic animals of the main Lena River channel 4.7 km upstream Stolb Island are Chironomidae, Plecoptera and Oligochaeta. In total, 48 species of macrobenthos were registered here. In spring the average density of macrozoobenthos in the channel is 680, in summer 770, in autumn 720 and in winter 380 ind/m**2, with the average biomass varying between 2.9 g/m**2 in spring, 7.06 in summer, 4.4 in autumn, and 2.6 in winter.