240 resultados para Species Composition


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sixty surface sediment samples from the eastern South Atlantic Ocean including the Walvis Ridge, the Angola and Cape basins, and the Southwest African continental margin were analysed for their benthic foraminiferal content to unravel faunal distribution patterns and ecological preferences. Live (stained with Rose Bengal) and dead faunas were counted separately and then each grouped by Q-mode principal component analysis into seven principal faunal end-members. Then, multiple regression technique was used to correlate Recent assemblages with available environmental variables and to finally differentiate between four principal groups of environmental agents acting upon the generation of benthic foraminiferal assemblages: (1) seasonality of food supply and organic carbon flux rates, together with oxygen content in the pore and bottom waters; (2) lateral advection of deep-water masses; (3) bottom water carbonate corrosiveness; and (4) energetic state at the benthic boundary layer and grain size composition of the substrate. Food supply and corresponding dissolved oxygen contents in the pore and bottom waters turned out to be the most important factors which control the distribution pattern of the Recent benthic foraminifera. At the continental margin, in the zone of coastal upwelling and its mixing area, benthic foraminiferal assemblages are dominated by stenobathic high-productivity faunas, characterized by elevated standing stocks, low diversities and a large number of endobenthic living species. At the continental shelf and upper continental slope the live assemblages are characterized by Rectuvigerina cylindrica, Uvigerina peregrina s.1., Uvigerina auberiana and Rhizammina spp. while the dead assemblages are characterized by Cassidulina laevigata, Bolivina dilatata, Bulimina costata and B. mexicana. At the lower continental slope strong influence of high organic matter fluxes on the species composition is restricted to the area off the Cunene river mouth, where the live assemblage is dominated by Uvigerina peregrina s.1., the corresponding dead assemblage by Melonis barleeanum and M. zaandamae. In the adjacent areas of the lower continental slope the biocoenosis is characterized by Reophax bilocularis, and Epistominella exigua which becomes dominant in the corresponding dead assemblage. At the Walvis Ridge and in the abyssal Angola and Cape basins, where organic matter fluxes are low and highly seasonal, benthic foraminiferal assemblages reflect both the oligotrophic situation and the deep and bottom water mass configuration. The top and flanks of the Walvis Ridge are inhabited by the Rhizammina, Psammosphaera and R. bilocularis live assemblages, the corresponding dead assemblages are dominated by G. subglobosa on the ridge top and E. exigua on the flanks. Within the highly diverse E. exigua dead assemblage several associated epibenthic species coincide with the core of NADW between about 1600 and 3700 m water depth. These species include Osangularia culter, Cibicidoides kullenbergi, Melonis pompilioides, Bolivinita pseudothalmanni and Bulimina alazanensis. The assemblages of the abyssal Cape and Angola basins are characterized by Nuttallides umbonifer and a high proportion of agglutinated species. These species are adapted to very low organic matter fluxes and a carbonate corrosive environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Changes in environmental conditions, such as those caused by elevated carbon dioxide (CO2), potentially alter the outcome of competitive interactions between species. This study aimed to understand how elevated CO2 could influence competitive interactions between hard and soft corals, by investigating growth and photosynthetic activity of Porites cylindrica (a hard coral) under elevated CO2 and in the presence of another hard coral and two soft coral competitors. Corals were collected from reefs around Orpheus and Pelorus Islands on the Great Barrier Reef, Australia. They were then exposed to elevated pCO2 for 4 weeks with two CO2 treatments: intermediate (pCO2 648) and high (pCO2 1003) compared with a control (unmanipulated seawater) treatment (pCO2 358). Porites cylindrica growth did not vary among pCO2 treatments, regardless of the presence and type of competitors, nor was the growth of another hard coral species, Acropora cerealis, affected by pCO2 treatment. Photosynthetic rates of P. cylindrica were sensitive to variations in pCO2, and varied between the side of the fragment facing the competitors vs. the side facing away from the competitor. However, variation in photosynthetic rates depended on pCO2 treatment, competitor identity, and whether the photosynthetic yields were measured as maximum or effective photosynthetic yield. This study suggests that elevated CO2 may impair photosynthetic activity, but not growth, of a hard coral under competition and confirms the hypothesis that soft corals are generally resistant to elevated CO2. Overall, our results indicate that shifts in the species composition in coral communities as a result of elevated CO2 could be more strongly related to the individual tolerance of different species rather than a result of competitive interactions between species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In northeastern Siberia, Russia, a 1.2 m sediment core was retrieved and radiocarbon dated from a small and shallow lake located at the western side of the lower Lena River (N 69°24', E 123°50', 81 m a.s.l.). The objective of this paper is to reconstruct the palaeoenvironmental variability and to infer major palaeoclimate trends that have occurred since ~ 13.3 cal. kyrs BP. We analysed the diatom assemblages, sedimentology (grain size, total organic carbon (TOC), total nitrogen (TN)), and the elemental and mineralogical composition using X-ray fluorescence (XRF) and X-ray diffractometry (XRD) of the sediment core. Our results show parallel changes in the diatom species composition and sediment characteristics. Enhanced minerogenic sediment input and the occurrence of pyrite is indicative of a cold period between ~ 12.7-11.6 cal. kyrs BP. The diatom data enable a qualitative inference about the local ecological conditions to be made, and reveal an oligotrophic lake system with alkaline and cold conditions during the earliest Holocene. Moderately warmer climates are inferred for the period from ~ 9.1 to 5.7 cal. kyrs BP. The major shift in the diatom assemblage, from dominance of small benthic fragilarioid taxa to a more complex diatom flora with an influx of several achnanthoid and naviculoid diatom species, occurred after a transitional period of about 1400 years (7.1 to 5.7 cal. kyrs BP) at ~ 5.7 cal. kyrs BP, indicating a circumneutral and warmer hydrological regime during the Holocene thermal maximum (HTM). Diatom valve concentrations declined starting ~ 2.8 cal. kyrs BP, but have been rising again since less than or equalt to 600 cal. years BP. This has occurred in parallel to the increased presence of acidophilous diatom taxa (e.g. Eunotia spp.) and decreased presence of small benthic fragilarioid species in the most recent sediments, which is interpreted as the result of neoglacial cooling and subsequent recent climate warming. Our findings are compared to other lake-inferred climate reconstructions along the Lena River. We conclude that the timing and spatial variability of the HTM in the lower Lena River area reveal a temporal delay from north to south.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In a sediment core from the Pacific sector of the Antarctic Zone (AZ) of the Southern Ocean, we report diatom-bound N isotope (d15Ndb) records for total recoverable diatoms and two distinct diatom assemblages (pennate and centric rich). These data indicate tight coupling between the degree of nitrate consumption and Antarctic climate across the last two glacial cycles, with d15Ndb (and thus the degree of nitrate consumption) increasing at each major Antarctic cooling event. Coupled with evidence from opal- and barium-based proxies for reduced export production during ice ages, the d15Ndb increases point to ice age reductions in the supply of deep ocean-sourced nitrate to the AZ surface. The two diatom assemblages and species abundance data indicate that the d15Ndb changes are not the result of changing species composition. The pennate and centric assemblage d15Ndb records indicate similar changes but with a significant decline in their difference during peak ice ages. A tentative seasonality-based interpretation of the centric-to-pennate d15Ndb difference suggests that late summer surface waters became nitrate free during the peak glacials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Global warming and ocean acidification are among the most important stressors for aquatic ecosystems in the future. To investigate their direct and indirect effects on a near-natural plankton community, a multiple-stressor approach is needed. Hence, we set up mesocosms in a full-factorial design to study the effects of both warming and high CO2 on a Baltic Sea autumn plankton community, concentrating on the impacts on microzooplankton (MZP). MZP abundance, biomass, and species composition were analysed over the course of the experiment. We observed that warming led to a reduced time-lag between the phytoplankton bloom and an MZP biomass maximum. MZP showed a significantly higher growth rate and an earlier biomass peak in the warm treatments while the biomass maximum was not affected. Increased pCO2 did not result in any significant effects on MZP biomass, growth rate, or species composition irrespective of the temperature, nor did we observe any significant interactions between CO2 and temperature. We attribute this to the high tolerance of this estuarine plankton community to fluctuations in pCO2, often resulting in CO2 concentrations higher than the predicted end-of-century concentration for open oceans. In contrast, warming can be expected to directly affect MZP and strengthen its coupling with phytoplankton by enhancing its grazing pressure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examined the zinc content of diatom frustules as an indicator of past changes in surface seawater Zn2+ concentration. Zn/Si data of samples from three cores located in the South Atlantic sector of the Southern Ocean spanning the last interglacial-glacial transition are presented. Changes in the Zn/Si record are linked to changes in the surface water Zn2+ concentration. The source of variation in Zn2+ concentration appears to be via changes in deep water upwelling and circulation. We rule out changes in phytoplankton productivity and aeolian dust input as a source of variation in the Zn/Si record. Likewise, the Zn/Si data are not linked to shifts in the diatom species composition of the sediment or sediment preservation effects. The Zn/Si results presented do not support the zinc hypothesis. There is no link between the uptake of CO2 by phytoplankton, as inferred from the d13C record, and the Zn/Si record.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Batch cultures of Isochrysis galbana (strain CCMP 1323) and Chrysotila lamellosa (strain CCMP 1307) were grown at salinity ca. 10 to ca. 35 and the alkenone distributions determined for different growth phases. UK'37 values decreased slightly with salinity for C. lamellosa but were largely unaffected for I. galbana except during the decline phase. The values decreased with incubation time in both species. The proportion of C37:4, used as proxy for salinity, increased in both species at 0.16-0.20% per salinity unit, except during the stationary phase for I. galbana. C37:4 was much more abundant in C. lamellosa (30-44%) than in I. galbana (4-12%). Although our results suggest that salinity has a direct effect on alkenone distributions, growth phase and species composition will also have a marked impact, complicating the use of alkenone distributions as a proxy for salinity in the marine environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and aim - The non-marine diatom communities in the Antarctic Region are characterized by a typical species composition, in close relationship with their environment. Despite the growing interest, the diatom flora of James Ross Island is only poorly known. The present paper discusses the diversity of limnoterrestrial diatoms on this island: seepages and streams. Methods - The diatom flora of 53 samples taken on the eastern side of the Ulu peninsula on James Ross Island has been studied using light and scanning electron microscopy. Key results - A total of 69 diatom taxa belonging to 26 genera have been observed. The genera Luticola, Diadesmis, Muelleria and Pinnularia dominated the species composition. The flora shows an interesting mixture of cosmopolitan and Antarctic species containing several species reaching on James Ross Island their most northern distribution in the Antarctic Region. The taxonomical position of one widespread Antarctic species, Psammothidium papilio (D.E.Kellogg, Stuiver, T.B.Kellogg & Denton) Kopalova & Van de Vijver comb. nov., is corrected. Conclusions - The limnoterrestrial diatom flora of James Ross Island has a rather low number of species, of which a large proportion shows a restricted Antarctic distribution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-resolution records of sedimentary proxies provide insights into fine-scale geochemical responses to climatic forcing. Gamma-ray attenuation (GRA) bulk-density data and magnetic stratigraphy records from Palmer Deep, Site 1098, show variability close to the same scale as ice cores, making this site ideal for high-resolution geochemical investigations. In conjunction with shipboard geophysical measurements, silica records allow high-resolution evaluation of the frequencies and amplitudes of biogenic variability. This provides investigators additional data sets to evaluate the global extent of climatic events that are presently defined by regional oceanic data sets (e.g., Younger Dryas in the North Atlantic) and to evaluate the potential mechanisms that link biological productivity and climate in the Southern Ocean. In addition, because of the observed links between diatom blooms and export productivity (Michaels and Silver, 1988, doi:10.1016/0198-0149(88)90126-4), biogenic silica may be an indicator of the efficiency of the biological pump (removal of organic carbon from the euphotic zone and burial within the sediments). Because the net removal of CO2 (on short time scales up to millennial, the balance between upwelled CO2, carbon fixation, and the removal of organic carbon from the surface ocean) can determine the atmospheric concentration; proxies that allow us to quantify export production yield insights into carbon cycle responses. In today's ocean, diatoms are integrally linked with new production (production based on the use of nitrate and molecular nitrogen rather than ammonium, which is generated by the microbial degradation of organic carbon) (Dugdale and Goering, 1967). Thus, as with nutrient utilization proxies, biogenic silica may be a good indicator of export production. The difficulties lie in translating the biogenic opal burial records to export production. Numerous factors control the preservation of sedimentary biogenic silica, including depth of the water column, water temperature, trace element chemistry, grazing pressure, bloom structure, and species composition of the diatom assemblage (Nelson et al., 1995, doi:10.1029/95GB01070). In addition, several recent investigations have noted additional complications. Iron limitation increases the uptake of Si relative to carbon (Hutchins et al., 1998, ; Takeda, 1998, doi:10.1038/31674). In the Southern Ocean, iron limitation could produce more robust, and thus better preserved, diatoms; thus, the burial record may be a record of iron limitation rather than of the export of organic carbon (Boyle, 1998). In addition, laboratory experiments show that bacteria accelerate the dissolution of biogenic silica (Bidle and Azam, 1999, doi:10.1038/17351). Both the species composition and temperature seem to influence the amount of dissolution. Evidence of recycling of silicic acid within the photic zone (Brzezinski et al., 1997) suggests that the silica pump (removal from the euphotic zone of silica relative to nitrogen and phosphorus) may work with variable efficiency. This becomes an issue when trying to reconstruct the removal of organic carbon from sedimentary biogenic silica records. In fact, there is a wide range in the Si:Corganic molar ratio in the Southern Ocean (0.18-0.81) (Nelson et al., 1995; Ragueneau et al., 2000, doi:10.1016/S0921-8181(00)00052-7). Thus, the presence (or absence) of biogenic silica alone may tell us little about the export productivity, complicating the interpretation of age-related trends. One recent assessment has added some hope to links between productivity and opal burial in the Southern Ocean (Pondaven et al., 2000). Quantitative comparison of different productivity proxies will greatly aid in this evaluation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Temora longicornis, a dominant calanoid copepod species in the North Sea, is characterised by low lipid reserves and high biomass turnover rates. To survive and reproduce successfully, this species needs continuous food supply and thus requires a highly flexible digestive system to exploit various food sources. Information on the capacity of digestive enzymes is scarce and therefore the aim of our study was to investigate the enzymatic capability to respond to quickly changing nutritional conditions. We conducted two feeding experiments with female T. longicornis from the southern North Sea off Helgoland. In the first experiment in 2005, we tested how digestive enzyme activities and enzyme patterns as revealed by substrate SDS-PAGE (sodium dodecylsulfate polyacrylamide gel electrophoresis) responded to changes in food composition. Females were incubated for three days fed ad libitum with either the heterotrophic dinoflagellate Oxyrrhis marina or the diatom Thalassiosira weissflogii. At the beginning and at the end of the experiment, copepods were deep-frozen for analyses. The lipolytic enzyme activity did not change over the course of the experiment but the enzyme patterns did, indicating a distinct diet-induced response. In a second experiment in 2008, we therefore focused on the enzyme patterns, testing how fast changes occur and whether feeding on the same algal species leads to similar patterns. In this experiment, we kept the females for 4 days at surplus food while changing the algal food species daily. At day 1, copepods were offered O. marina. On day 2, females received the cryptophycean Rhodomonas baltica followed by T. weissflogii on day 3. On day 4 copepods were again fed with O. marina. Each day, copepods were frozen for analysis by means of substrate SDS-PAGE. This showed that within 24 h new digestive enzymes appeared on the electrophoresis gels while others disappeared with the introduction of a new food species, and that the patterns were similar on day 1 and 4, when females were fed with O. marina. In addition, we monitored the fatty acid compositions of the copepods, and this indicated that specific algal fatty acids were quickly incorporated. With such short time lags between substrate availability and enzyme response, T. longicornis can successfully exploit short-term food sources and is thus well adapted to changes in food availability, as they often occur in its natural environment due seasonal variations in phyto- and microzooplankton distribution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Observations of hummock and string-like microrelief features were made in High Arctic hydric meadows. Thermal shearing of thick bryophyte mats, and subsequent roll back during spring flooding appears to be one way in which this topography is formed. Hummocky and non-hummocky (flat) meadows show distinct floristic differences which may in part be due to observed differences in temperature, nutrient concentrations and moisture relations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Marine birds are important predators in the marine ecosystem, and dietary studies can give useful information about their feeding ecology, food webs and oceanographic variability. The aim of this study was to increase our understanding of the diet and trophic level of the seabirds breeding in Kongsfjorden, Svalbard. We have used fatty acids and stable isotopes, both of which integrate diet information over space and time, to determine trophic relationships in marine food webs. Fatty acid compositions of muscle from Little auk (Alle alle), Brünnich's guillemot (Uria lomvia), Black-legged kittiwake (Rissa tridactyla), Northern fulmar (Fulmarus glacialis) and Glaucous gull (Larus hyperboreus) were determined and compared with their prey species. Canonical analysis (CA) showed that fatty acid composition differed among the five seabird species. Little auk, Black-legged kittiwake and Northern fulmar had high levels of the Calanus markers 20:1n9 and 22:1, indicating that these seabirds are a part of the Calanus food chain. Brünnich's guillemot differed from the other species with much lower levels of 20:1n9 and 22:1. Brünnich's guillemot is a pursuit diver feeding on fish and amphipods deeper in the water column, below 30 m. Glaucous gull also differed from the other seabird species, with a larger variation in the fatty acid composition indicating a more diverse diet. Trophic level analysis placed Little auk at the lowest trophic level, Brünnich's guillemot and Black-legged kittiwake at intermediate levels and Glaucous gull and Northern fulmar at the highest trophic level.