450 resultados para GF(2m)
Resumo:
Nitrogen fixation data from the cruise number MSM18/5 with research vessel "Maria S. Merian" from 22.08.-20.09.2011 (from Walvis Bay to Walvis Bay) in front of Angola and northern Namibia. Samples taken by CTD- rosette sampler from different depths and incubated in glass bottles (535 ml) at light intensities that resemble the in situ light intensities of the sampling depth after 15N2 gas was injected to the sample. After the incubation time of 6 hours, the complete bottle content was filtered onto a pre-combusted Whatman GF/F filter. Filters were frozen, transported to the institute on dry ice and measured in a mass spectrometer for Delta 15N. The principle of the method was described by Montoya et al. (1996) and calculation was done according to their spread sheet. From the data of the single depths, the nitrogen fixation per square meter within the upper 40 m of the water column was calculated. The methods are described in detail in a paper submitted by Wasmund et al. in 2014 to be printed in 2015. Some results are surprisingly below zero. This occurs if the Delta 15N of the blank is higher than the measurement after incubation. It indicates that no nitrogen fixation occurred. Due to natural variability, the variability of the nitrogen fixation data is high. In an overall estimate, also over several cruises, negative and positive values compensate more or less, suggesting that nitrogen fixation is insignificant in the waters in front of northern Namibia and southern Angola.
Resumo:
Under present climate conditions, convection at high latitudes of the North Pacific is restricted to shallower depths than in the North Atlantic. To what extent this asymmetry between the two ocean basins was maintained over the past 20 kyr is poorly known because there are few unambiguous proxy records of ventilation from the North Pacific. We present new data for two sediment cores from the California margin at 800 and 1600 m depth to argue that the depth of ventilation shifted repeatedly in the northeast Pacific over the course of deglaciation. The evidence includes benthic foraminiferal Cd/Ca, 18O/16O, and 13C/12C data as well as radiocarbon age differences between benthic and planktonic foraminifera. A number of features in the shallower of the two cores, including an interval of laminated sediments, are consistent with changes in ventilation over the past 20 kyr suggested by alternations between laminated and bioturbated sediments in the Santa Barbara Basin and the Gulf of California [Keigwin and Jones, 1990 doi:10.1029/PA005i006p01009; Kennett and Ingram, 1995 doi:10.1038/377510a0; Behl and Kennett, 1996 doi:10.1038/379243a0]. Data from the deeper of the two California margin cores suggest that during times of reduced ventilation at 800 m, ventilation was enhanced at 1600 m depth, and vice versa. This pronounced depth dependence of ventilation needs to be taken into account when exploring potential teleconnections between the North Pacific and the North Atlantic.
Resumo:
Distribution patterns, petrography, whole-rock and mineral chemistry, and shape and fabric data are described for the most representative basement lithologies occurring as clasts (granule to bolder grain-size class) from the 625 m deep CRP-2/2A drillcore. A major change in the distribution pattern of the clast types occurs at c. 310 mbsf., with granitoid-dominated clasts above and mainly dolerite clasts below; moreover, compositional and modal data suggest a further division into seven main detrital assemblages or petrofacies. In spite of this variability, most granitoid pebbles consist of either pink or grey biotite±hornblende monzogranites. Other less common and ubiquitous lithologies include biotite syenogranite, biotite-hornblende granodiorite, tonalite, monzogranitic porphyries (very common below 310 mbsf), microgranite, and subordinately, monzogabbro, Ca-silicate rocks, biotite-clinozoisite schist and biotite orthogneiss (restricted to the pre-Pliocene strata). The ubiquitous occurrence of biotite±hornblende monzogranite pebbles in both the Quaternary-Pliocene and Miocene-Oligocene sections, apparently reflects the dominance of these lithologies in the onshore basement, and particularly in the Cambro-Ordovician Granite Harbour Igneous Complex which forms the most extensive outcrop in southern Victoria Land. The petrographical features of the other CRP-2/2A pebble lithologies are consistent with a supply dominantly from areas of the Transantarctic Mountains facing the CRP-2/2A site, and they thus provide further evidence of a local provenance for the supply of basement clasts to the CRP-2/2A sedimentary strata.
Resumo:
Organic geochemical and visual kerogen analyses were carried out on approximately 50 samples from Leg 81 (Rockall Plateau, North Atlantic). The sediments are from four sites (Sites 552-555), Pleistocene to Paleocene in age, and represent significantly different depositional environments and sources of organic matter. The Pleistocene glacial-interglacial cycles show differences in sedimentary organic matter based on Rock-Eval pyrolysis, organic phosphorus, and pyrolysis/mass-spectrometry analyses. Glacial samples contain more organic carbon, with a larger proportion of reworked organic matter. This probably reflects increased erosion of continental and shelf areas as a result of low sea level stands. Inter glacial samples contain a larger proportion of marine organic matter as determined by organic phosphorus and pyrolysis analyses. This immature, highly oxidized marine organic matter may be associated with the skeletal organic matrix of calcareous organisms. In addition, Rock-Eval data indicate no significant inorganic-carbonate contribution to the S3 pyrolysis peak. The Pliocene-Miocene sediments consist of pelagic, biogenic carbonates. The organic matter is similar to that of the Pleistocene interglacial periods; a mixture of oxidized marine organic matter and reworked, terrestrial detritus. The Paleocene-Oligocene organic matter reflects variations in source and depositional factors associated with the isolation of Rockall from Greenland. Paleocene sediments contain primarily terrestrial organic matter with evidence of in situ thermal stress resulting from interbedded lava flows. Late Paleocene and early Eocene organic matter suggests a highly oxidized marine environment, with major periods of deposition of terrestrially derived organic matter. These fluctuations in organic-matter type are probably the result of episodic shallowing and deepening of Rockall Basins. The final stage of Eocene/Oligocene sedimentation records the accelerating subsidence of Rockall and its isolation from terrestrial sources (Rockall and Greenland). This is shown by the increasingly marine character of the organic matter. The petroleum potential of sediments containing more than 0.5% organic carbon is poor because of their thermal immaturity and their highly oxidized and terrestrial organic-matter composition.
Resumo:
The lipids and kerogens of 15 sediment samples from Site 547 (ranging from Pleistocene to Early Jurassic/Triassic) and 4 from Site 545 (Cretaceous) have been analyzed. A strong terrestrial contribution of organic matter was found, and significant autochthonous inputs were also present, especially at Site 545. Both strongly reduced and highly oxidized sediments have been found in the Cenozoic and Jurassic samples of Site 547. On the contrary, all the Cretaceous sections of Sites 547 and 545 are anoxic. Sediments from anoxic paleoenvironments are immature and have a high content of sterenes, diasterenes, steradienes, hopenes, and ßß hopanes. Samples from oxic paleoenvironments are mainly mature and their content of hopenes and steriod structures is below the detection level. Nevertheless, their hopane distributions have the immature ßß homologs as the predominant molecular markers. For Site 545 the most abundant molecular markers are ring A monoaromatic steranes, and their presence is attributed to microbial and chemical transformations during early diagenesis.