396 resultados para ANTARCTIC CIRCUMPOLAR CURRENT
Resumo:
High-resolution records of the natural radionuclide 230Th were measured in sediments from the eastern Atlantic sector of the Antarctic circumpolar current to obtain a detailed reconstruction of the sedimentation history of this key area for global climate change during the late Quaternary. High-resolution dating rests on the assumption that the 230Thex flux to the sediments is constant. Short periods of drastically increased sediment accumulation rates (up to a factor of 8) were determined in the sediments of the Antarctic zone during the climate optima at the beginning of the Holocene and the isotope stage 5e. By comparing expected and measured accumulation rate of 230Thex, lateral sediment redistribution was quantified and vertical particle rain rates originating from the surface water above were calculated. We show that lateral contributions locally were up to 6.5 times higher than the vertical particle rain rates. At other locations only 15% of the expected vertical particle rain rate were deposited.
Resumo:
Radiogenic isotopes of hafnium (Hf) and neodymium (Nd) are powerful tracers for water mass transport and trace metal cycling in the present and past oceans. However, due to the scarcity of available data the processes governing their distribution are not well understood. Here we present the first combined dissolved Hf and Nd isotope and concentration data from surface waters of the Atlantic sector of the Southern Ocean. The samples were collected along the Zero Meridian, in the Weddell Sea and in the Drake Passage during RV Polarstern expeditions ANT-XXIV/3 and ANT-XXIII/3 in the frame of the International Polar Year (IPY) and the GEOTRACES program. The general distribution of Hf and Nd concentrations in the region is similar. However, at the northernmost station located 200 km southwest of Cape Town a pronounced increase of the Nd concentration is observed, whereas the Hf concentration is minimal, suggesting much less Hf than Nd is released by the weathering of the South African Archean cratonic rocks. From the southern part of the Subtropical Front (STF) to the Polar Front (PF) Hf and Nd show the lowest concentrations (<0.12 pmol/kg and 10 pmol/kg, respectively), most probably due to the low terrigenous flux in this area and efficient scavenging of Hf and Nd by biogenic opal. In the vicinity of landmasses the dissolved Hf and Nd isotope compositions are clearly labelled by terrigenous inputs. Near South Africa Nd isotope values as low as epsilon-Nd = -18.9 indicate unradiogenic inputs supplied via the Agulhas Current. Further south the isotopic data show significant increases to epsilon-Hf = 6.1 and epsilon-Nd = -4.0 documenting exchange of seawater Nd and Hf with the Antarctic Peninsula. In the open Southern Ocean the Nd isotope compositions are relatively homogeneous (epsilon-Nd ~ -8 to -8.5) towards the STF, within the Antarctic Circumpolar Current, in the Weddell Gyre, and the Drake Pasage. The Hf isotope compositions in the entire study area only show a small range between epsilon-Hf = +6.1 and +2.8 support Hf to be more readily released from young mafic rocks compared to old continental ones. The Nd isotope composition ranges from epsilon-Nd = -18.9 to -4.0 showing Nd isotopes to be a sensitive tracer for the provenance of weathering inputs into surface waters of the Southern Ocean.
Resumo:
Reconstructing past detrital flux and provenance in the Southern Ocean provides information about changes in source regions associated with climate variations and transport pathways. We present a Last Glacial Maximum (LGM) to Holocene comparison of 230Th normalised fluxes combined with sediment provenance data (Pb, Nd and Sr isotopes) from a latitudinal core transect in the eastern Atlantic sector of the Southern Ocean (ODP Leg 177 cores). We compare the radiogenic isotopic composition (IC) of detritus in these cores to that of cores proximal to potential source areas. We observe a well-defined latitudinal Holocene gradient in both detrital flux and provenance of sediment. High detrital fluxes in the north are associated with terrigenous material derived from southern Africa, while low detrital fluxes in the south are associated with supply from southern South America, West Antarctica and the South Sandwich Islands. The data suggest that this well-defined Holocene gradient in detrital flux and sediment provenance is controlled by the flow of the Antarctic Circumpolar Current (ACC) and the position of its frontal zones. The LGM is characterised by 2 to 6 times higher than modern detrital fluxes at most ODP Leg 177 sites. The LGM detrital fluxes do not show a latitudinal trend and suggest a greater supply of glaciogenic detritus sourced from southern South America. Glacial Patagonian outwash sediments (< 5 µm fraction) were analysed and compared to the bulk compositions of the marine sediments. The Pb IC of the Patagonian sediments is very similar to the glacial IC of sediments in the Scotia Sea and at ~ 49° S latitude in the eastern Atlantic sector. We propose that the glacial IC of sediments is controlled by increased delivery of Patagonian detritus initially supplied by glaciers and then transported at depth via the ACC.
Resumo:
As part of the GEOTRACES Polarstern expedition ANT XXIV/3 (ZERO and DRAKE) we have measured the vertical distribution of 234Th on sections through the Antarctic Circumpolar Current along the zero meridian and in Drake Passage and on an EW section through the Weddell Sea. Steady state export fluxes of 234Th from the upper 100m, derived from the depletion of 234Th with respect to its parent 238U, ranged from 621±105 dpm/m**2/d to 1773±90 dpm/m**2/d. This 234Th flux was converted into an export flux of organic carbon ranging from 3.1-13.2 mmolC/m**2/d (2.1-9.0 mmolC/m**2/d) using POC/234Th ratio of bulk (respectively >50 µm) suspended particles at the export depth (100 m). Non-steady state fluxes assuming zero flux under ice cover were up to 23% higher. In addition, particulate and dissolved 234Th were measured underway in high resolution in the surface water with a semi-automated procedure. Particulate 234Th in surface waters is inversely correlated with light transmission and pCO2 and positively with fluorescence and optical backscatter and is interpreted as a proxy for algal biomass. High resolution underway mapping of particulate and dissolved 234Th in surface water shows clearly where trace elements are absorbed by plankton and where they are exported to depth. Quantitative determination of the export flux requires the full 234Th profile since surface depletion and export flux become decoupled through changes in wind mixed layer depth and in contribution to export from subsurface layers. In a zone of very low algal abundance (54-58 °S at the zero meridian), confirmed by satellite Chl-a data, the lowest carbon export of the ACC was observed, allowing Fe and Mn to maintain their highest surface concentrations (Klunder et al., this issue, Middag et al., this issue). An ice-edge bloom that had developed in Dec/Jan in the zone 60-65 °S as studied during the previous leg (Strass et al., in prep) had caused a high export flux at 64.5 °S when we visited the area two months later (Feb/March). The ice-edge bloom had then shifted south to 65-69 °S evident from uptake of CO2 and dissolved Fe, Mn and 234Th, without causing export yet. In this way, the parallel analysis of 234Th can help to explain the scavenging behaviour of other trace elements.
Resumo:
Drake Passage is a major route for many water masses from the strong Antarctic Circumpolar Current. During the ANTXXIV-3 expedition (in 2008) the vertical distributions of dissolved and size-fractionated particulate 231Pa and thorium isotopes (230Th, 232Th and 234Th) were investigated in order to better define the scavenging regimes and the effects of the oceanic circulation on the fate of particulate material and on the Pa-Th distributions in the water column. The reversible scavenging-model applied to both 230Th and 234Th, in the upper 1500 m depth, gives estimates of the particle dynamics (settling velocities S~ 500-1300 m/y, adsorption and desorption rate constants of 0.1-0.4 1/y and 1-6 1/y respectively). Particulate 234Th/230Th activity ratio shows a depth dependence, with decreasing ratio with increasing depth in agreement with previous studies, but no relationship with particle size was found. 231Pa and thorium isotope fractionation and partition coefficients were investigated with particle size vs depth and latitude and appear to vary horizontally following a North-South gradient. This suggests that both radionuclides are mostly bound to the fine suspended particles. At Drake Passage, the 230Thxs distribution is controlled by a southward upwelling of deep water (clearly visible on the vertical section of total 230Thxs, defined as dissolved + particulate concentrations) and reversible-scavenging processes (linear increase of 230Thxs with increasing depth) with North of the Southern ACC Front, higher settling velocities and less adsorption/desorption cycles, than South of it. Distributions of dissolved and total 231Paxs also reflect the influence of the North-South upwelling but somehow this effect appears to be limited to the upper 1500 m depth of the water column. Below this depth, 231Paxs vertical profiles exhibit contrasted concentrations, with some high dissolved activities in the deep water of the stations in the northern part of the ACC and not South of the ACC. These N-S differences in dissolved 231Paxs were attributed to the different origins and scavenging history of the deep Pacific waters flowing across Drake Passage. Here at North, radionuclides-rich deep water originates from the Central Pacific, while at South, deep water derives from the Southern Pacific in which the observed low radionuclides concentrations are attributed to high opal abundance. South of the Drake Passage, high dissolved and particulate activities of 230Th and 232Th confirmed the intrusion of 230Th-rich Weddell Sea Deep Water (WSDW) close to the Antarctic Peninsula.
Resumo:
Eight- to ten-point depth profiles (from 1200 to 4800 m water depth) of oxygen and carbon isotopic values derived from benthic foraminifera, averaged over selected times in the past 160 ka, are presented. The data are from 10 sediment cores off eastern New Zealand, mainly North Chatham Rise. This lies under the Deep Western Boundary Current in the Southwest Pacific and is the main point of entry for several water masses into the Pacific Ocean. The benthic isotopic profiles are related to the structure of water masses at present and inferred for the past. These have retained a constant structure of Lower Circumpolar Deep Water-Upper Circumpolar Deep Water/North Pacific Deep Water-Antarctic Intermediate Water with no apparent changes in the depths of water mass boundaries between glacial and interglacial states. Sortable silt particle size data for four cores are also examined to show that the vigour of the inflow to the Pacific, while variable, appears to have remained fairly constant on average. Among the lowest Last Glacial Maximum values of benthic d13C in the world ocean (-1.03 per mil based on Cibicidoides wüllerstorfi) occurs here at ~2200 m. Comparable values occur in the Atlantic sector of the Southern Ocean, while those from the rest of the Pacific are distinctly higher, confirming that the Southern Ocean was the source for the unventilated/nutrient-enriched water seen here. Oxygen and carbon isotopic data are compatible with a glacial cold deep water mass of high salinity, but lower nutrient content (or better ventilated), below ~3500 m depth. This contrasts with the South Atlantic where unventilated/nutrient-enriched water extends all the way to the sea bed. Comparison with previous studies also suggests that the deeper reaches of the Antarctic Circumpolar Current below ~3500 m are not homogeneous all around the Southern Ocean, with the Kerguelen Plateau and/or the Macquarie-Balleny Ridges posing barriers to the eastward spread of the deepest low-d13C water out of the South Atlantic in glacials. These barriers, combined with inferred high density of bottom waters, restricted inter-basin exchange and allow three glacial domains dominated by bottom waters from Weddell Sea, Adelie Coast and Ross Sea to be defined. We suggest that the Ross Sea was the main source of the deep water entering the Pacific below ~3500 m.
Resumo:
Campbell Plateau occupies a key position in the southwest Pacific sector of the Southern Ocean. The plateau confines and steers the Antarctic Circumpolar Current (ACC) along its flanks, isolating the Subantarctic plateau from cold polar waters. Oxygen and carbon isotope records from Campbell Plateau cores provide new records of water mass stratification for the past 130 kyr. During glacial climes, strengthening of the Subantarctic Front (SAF) caused waters over the plateau flanks to be deeply mixed and ~3°C cooler. Waters of the plateau interior remained stratified and isolated from the cold southern waters. In the west, waters cooled markedly (~4°C) owing to reduced entrainment of Tasman Sea water. Marked cooling also occurred north of Campbell Plateau under increased entrainment of polar water by a branch of the SAF. The ACC remained along the flanks of Campbell Plateau during the last interglacial, when interior waters were stratified and warmer by ~1°C than now.
Resumo:
For the investigation of organic carbon fluxes reaching the seafloor, oxygen microprofiles were measured at 145 sites in different sub-regions of the Southern Ocean. At eleven sites, an in situ oxygen microprofiler was deployed for the measurement of oxygen profiles and the calculation of organic carbon fluxes. At four sites, both in situ and ex situ data were determined for high latitudes. Based on this dataset as well as on previous published data, a relationship was established for the estimation of fluxes derived by ex situ measured O2 profiles. The fluxes of labile organic matter range from 0.5 to 37.1 mgC m**2/day. The high values determined by in situ measurements were observed in the Polar Front region (water depth of more than 4290 m) and are comparable to organic matter fluxes observed for high-productivity, upwelling areas like off West Africa. The oxygen penetration depth, which reflects the long-term organic matter flux to the sediment, was correlated with assemblages of key diatom species. In the Scotia Sea (~3000 m water depth), oxygen penetration depths of less than 15 cm were observed, indicating high benthic organic carbon fluxes. In contrast, the oxic zone extends down to several decimeters in abyssal sediments of the Weddell Sea and the southeastern South Atlantic. The regional pattern of organic carbon fluxes derived from micro-sensor data suggest that episodic and seasonal sedimentation pulses are important for the carbon supply to the seafloor of the deep Southern Ocean.
Resumo:
We present a high-resolution paleoceanographic record of deglaciation based on diatom assemblages from a core located just south of the Polar Front in the southwest Atlantic. Core KC073 is from a sediment drift at the mouth of the Falkland Trough and contains sediments from the Last Glacial Maximum (LGM) to present, dated using radiocarbon dates on bulk organic matter and radiolarian stratigraphy. The site lies along the path of the Antarctic Circumpolar Current (ACC) and immediately downstream of where North Atlantic Deep Water (NADW) is entrained into the ACC. Significant variations in ocean conditions are reflected in high-amplitude changes in diatom concentrations and assemblage composition. The diatom assemblage at the LGM indicates that winter sea ice extent was at least 5° farther north than present until at least 19.0 ka (calendar years) and summer sea ice may have occasionally extended over the site, but for the most part it lay to the south. During deglaciation, Chaetoceros resting spores (CRS) dominate the diatom assemblage with valve concentrations in excess of 500 * 10**6 valves per gram. Submillennial-scale variations in the numbers of CRS and Thalassiosira antarctica occur throughout the late deglacial and dominate the changes in diatom concentration. We propose that the influx of CRS is controlled by the flow of NADW over the Falkland Plateau. As such our data provide unique evidence that NADW impacted on this sector of the Southern Ocean during deglaciation. During the Holocene the sedimentation rate dramatically reduced. We suggest that the ACC flow increased over the site and inhibited settling and winnowed the surface sediments.
Resumo:
The High Nutrient Low Chlorophyll (HNLC) Southern Ocean plays a key role in regulating the biological pump and the global carbon cycle. Here we examine the efficacy of stable cadmium (Cd) isotope fractionation for detecting differences in biological productivity between regions. Our results show strong meridional Cd isotope and concentration gradients modulated by the Antarctic Fronts, with a clear biogeochemical divide located near 56°S. The coincidence of the Cd isotope divide with the Southern Boundary of the Antarctic Circumpolar Current (ACC),together with evidence for northward advection of the Cd signal in the ACC, demonstrate that Cd isotopes trace surface ocean circulation regimes. The relationships between Cd isotope ratios and concentrations display two negative correlations, separating the ACC and Weddell Gyre into two distinct Cd isoscapes. These arrays are consistent with Rayleigh fractionation and imply a doubling of the isotope effect due to biological consumption of Cd during water transport from the Weddell Gyre into the ACC. The increase in magnitude of Cd isotope fractionation can be accounted for by differences in the phytoplankton biomass, community composition, and their physiological uptake mechanisms in the Weddell Gyre and ACC, thus linking Cd isotope fractionation to primary production and the global carbon cycle.
Resumo:
Neodymium (Nd) isotopes were measured on 181 samples of fossil fish teeth recovered from Oligocene to Miocene sections at Ocean Drilling Program Site 1090 (3700 m water depth) on Agulhas Ridge in the Atlantic sector of the Southern Ocean. A long-term decreasing trend toward less radiogenic Nd isotope compositions dominates the record. This trend is interrupted by shifts toward more radiogenic compositions near the early/late Oligocene boundary and the Oligocene/Miocene boundary. Overall, epsilon-Nd values at Agulhas Ridge are more radiogenic than at other Atlantic locations, and are similar to those at Indian Ocean locations. The pattern of variability is remarkably similar to Nd isotope results from Walvis Ridge (South Atlantic) and Ninetyeast Ridge (Indian Ocean). In contrast, Agulhas Ridge and Maud Rise Nd isotope records do not show similar patterns over this interval. Results from this study indicate that deep water in the Atlantic flowed predominantly from north to south during the Oligocene and Miocene, and that export of Northern Component Water (NCW) to the Southern Ocean increased in the late Oligocene. There is also evidence for efficient exchange of deep waters between the Atlantic sector of the Southern Ocean and the Indian Ocean, although the direction of deep water flow is not entirely clear from these data. The shifts to more radiogenic Nd isotopic compositions most likely represent increases in the flux of Pacific waters through Drake Passage, and the timing of these events reflect development of a mature Antarctic Circumpolar Current (ACC). The relative timing of increased NCW export and ACC maturation support hypotheses that link deep water formation in the North Atlantic to the opening of Drake Passage.
Resumo:
The long-term cooling trend of the Cenozoic is punctuated by shorter-term climatic events, such as the inception of permanent ice sheets on Antarctica at the Eocene?Oligocene Transition (~33.7 Ma). Taking advantage of the excellent state of preservation of coccolith calcite in equatorial Atlantic deep-sea cores, we unveil progressive tropical warming in the Atlantic Ocean initiated 4 million years prior to Antarctic glaciation. Warming preceding glaciation may appear counterintuitive, but we argue that this long-term climatic precursor to the EOT reinforced cooling of austral high latitudes via the redistribution of heat at the surface of the oceans. We discuss this new prominent paleoceanographic and climatic feature in the context of overarching pCO2 decline and the establishment of an Antarctic circumpolar current.
Resumo:
Thirty-two surface sediment samples from the Southern Ocean (eastern Atlantic sector), between the Subtropical Front and the Weddell Gyre, were investigated to provide information on the distribution of modern organic-walled dinoflagellate cysts in relation to the oceanic fronts of the Antarctic Circumpolar Current (ACC). A clearly distinguishable distribution pattern was observed in relation to the water masses and fronts of the ACC. The dinoflagellate cysts of species characteristic of open oceanic environments, such as Impagidinium species, are highly abundant around the Subtropical Front, whereas south of this front, cosmopolitan species such as Nematosphaeropsis labyrinthus and the cysts of Protoceratium reticulatum characterise the transition from subtropical to subantarctic surface waters. The subantarctic surface waters are dominated by the cysts of heterotrophic dinoflagellates, such as Protoperidinium spp. and Selenopemphix antarctica. The cysts of Protoperidinium spp. form the dominant part of the assemblages around the Antarctic Polar Front, whereas S. antarctica concentrations increase further to the south. The presence of S. antarctica in sediments of the Maud Rise, a region of seasonal sea-ice cover, reflects its tolerance for low temperatures and sea-ice cover. A previously undescribed species, Cryodinium meridianum gen. nov. sp. nov., has a restricted distribution pattern between the Antarctic Polar Front and the ACC-Weddell Gyre Boundary.
Resumo:
Tectonic changes that produced a deep Tasmanian Gateway between Australia and Antarctica are widely invoked as the major mechanism for Antarctic cryosphere growth and Antarctic Circumpolar Current (ACC) development during the Eocene/Oligocene (E/O) transition (34-33 Ma). Ocean Drilling Program (ODP) Leg 189 recovered near-continuous marine sedimentary records across the E/O transition interval at four sites around Tasmania. These records are largely barren of calcareous microfossils but contain a rich record of siliceous- and organic-walled marine microfossils. In this study we integrate micropaleontological, sedimentological, geochemical, and paleomagnetic data from Site 1172 (East Tasman Plateau) to identify four distinct phases (A-D) in the E/O Tasmanian Gateway deepening that are correlative among ODP Leg 189 sites. Phase A, prior to 35.5 Ma: minor initial deepening characterized by a shallow marine prodeltaic setting with initial condensation episodes. Phase B, 35.5-33.5 Ma: increased deepening marked by the onset of major glauconitic deposition and inception of energetic bottom-water currents. Phase C, 33.5-30.2 Ma: further deepening to bathyal depths, with episodic erosion by increasingly energetic bottom-water currents. Phase D, <30.2 Ma: establishment of stable, open-ocean, warm-temperate, oligotrophic settings characterized by siliceous-carbonate ooze deposition. Our combined evidence indicates that this early Oligocene Tasmanian Gateway deepening initially produced an eastward flow of relatively warm surface waters from the Australo-Antarctic Gulf into the southwestern Pacific Ocean. This "proto-Leeuwin" current fundamentally differs from previous regional reconstructions of eastward flowing cool water (e.g., a "proto-ACC") during the early Oligocene and thereby represents an important new constraint for reconstructing regional- to global-scale dynamics for this major global change event.
Resumo:
In large parts of the Southern Ocean, primary production is limited due to shortage of iron (Fe). We measured vertical Fe profiles in the western Weddell Sea, Weddell-Scotia Confluence, and Antarctic Circumpolar Current (ACC), showing that Fe is derived from benthic Fe diffusion and sediment resuspension in areas characterized by high turbulence due to rugged bottom topography. Our data together with literature data reveal an exponential decrease of dissolved Fe (DFe) concentrations with increasing distance from the continental shelves of the Antarctic Peninsula and the western Weddell Sea. This decrease can be observed 3500 km eastward of the Antarctic Peninsula area, downstream the ACC. We estimated DFe summer fluxes into the upper mixed layer of the Atlantic sector of the Southern Ocean and found that horizontal advection dominates DFe supply, representing 54 ± 15% of the total flux, with significant vertical advection second most important at 29 ± 13%. Horizontal and vertical diffusion are weak with 1 ± 2% and 1 ± 1%, respectively. The atmospheric contribution is insignificant close to the Antarctic continent but increases to 15 ± 10% in the remotest waters (>1500 km offshore) of the ACC. Translating Southern Ocean carbon fixation by primary producers into biogenic Fe fixation shows a twofold excess of new DFe input close to the Antarctic continent and a one-third shortage in the open ocean. Fe recycling, with an estimated 'fe' ratio of 0.59, is the likely pathway to balance new DFe supply and Fe fixation.