209 resultados para approximate analytical optical transfer function
Resumo:
A recently developed technique for determining past sea surface temperatures (SST), based on an analysis of the unsaturation ratio of long chain C37 methyl alkenones produced by Prymnesiophyceae phytoplankton (U37 k' ), has been applied to an upper Quaternary sediment core from the equatorial Atlantic. U37 k' temperature estimates were compared to those obtained from delta18O of the planktonic foraminifer Globigerinoides sacculifer and of planktonic foraminiferal assemblages for the last glacial cycle. The alkenone method showed 1.8°C cooling at the last glacial maximum, about 1/2 to 1/3 of the decrease shown by the isotopic method (6.3°C) and foraminiferal modern analogue technique estimates for the warm season (3.8°C). Warm season foraminiferal assemblage estimates based on transfer functions are out of phase with the other estimates, showing a 1.4°C drop at the last glacial maximum with an additional 0.9°C drop in the deglaciation. Increased alkenone abundances, total organic carbon percentage and foraminiferal accumulation rates in the last glaciation indicate an increase in productivity of as much as 4 times over present day. These changes are thought to be due to increased upwelling caused by enhanced winds during the glaciation. If U37 k' estimates are correct, as much as 50-70% (up to 4.5°C) of estimated delta18O and modern analogue temperature changes in the last glaciation may have been due to changes in thermocline depth, whereas transfer functions seem more strongly influenced by seasonality changes. This indicates these estimates may be influenced as strongly by other factors as they are by SST, which in the equatorial Atlantic was only reduced slightly in the last glaciation.
Resumo:
Surface sediments at 439 sites throughout the North Atlantic Ocean and adjacent seas have been analyzed for dinoflagellate cysts in order to establish a reference database from which paleoenvironmental transfer functions can be developed. Laboratory procedures and systematics were standardized in order to avoid bias introduced by the selective loss of taxa and to facilitate site to site comparison. 371 sites were retained to develop the database that includes 41 taxa, some of which were grouped using morphological and/or ecological criteria. 27 taxa were retained for statistical purposes. Distribution maps of these latter taxa have been plotted on the basis of their relative abundance. Principal component analyses were performed in order to describe the distribution of assemblages. The relation between the assemblages, as well as the relative abundance of individual taxa, and selected sea-surface parameters are illustrated. The parameters which were considered include temperature and salinity for winter (February) and summer (August) together with the duration of sea-ice cover. Transfer functions using the best analogue method have been tested with a view to reconstruct past sea-surface parameters. Validation procedures on this transfer function demonstrate that more than 95% of the reconstructions are included within the interannual variability of modern sea-surface conditions. Therefore, these transfer functions give accurate results and can be applied to reconstructing paleo-temperatures and -salinities from analogous assemblages in Quaternary sedimentary sequences. Protoperidinium stellatum (Wall in Wall & Dale, 1968) Head, comb. nov. (basionym = Peridinium stellatum) is proposed as new, and Algidasphaeridium? minutum var. cezare de Vernal et al., 1989 ex de Vernal et al. is newly validated.
Resumo:
Planktonic foraminiferal census counts are used to construct high-resolution sea surface temperature (SST) and subsurface (thermocline) temperature records at a core site in the Tobago Basin, Lesser Antilles. The record is used to document climatic variability at this tropical site in comparison to middle- and high-latitude sites and to test current concepts of cross-equatorial heat transports as a major player in interhemispheric climate variability. Temperatures are estimated using transfer function and modern analog techniques. Glacial - maximum cooling of 2.5°-3°C is indicated; maximum cooling by 4°C is inferred for isotope stage 3. The SST record displays millennial-scale variability with temperature jumps of up to 3°C and closely tracks the structure of ice-core Dansgaard/Oeschger cycles. SST variations in part of the record run opposite to the SST evolution at high northern latitude sites, pointing to thermohaline circulation and marine heat transport as an important factor driving SST in the tropical and high-latitude Atlantic, both on orbital and suborbital timescales.
Resumo:
High-resolution studies of a planktonic foraminifer core record from the South China Sea (SCS) (31KL: 18°45.4'N, 115°52.4'E, water depth 3360 m) reveal changes driven by ice-volume forcings in the climate of the East Asian monsoon in the western Pacific marginal sea during the late Quaternary. The analyses of planktonic foraminifer faunal abundance data from the core indicate significant variations in the relative abundances of the dominant taxa over the past 100,000 years since the isotope stage 5. The transfer function estimates of faunal sea surface temperatures (SST) correlate well with a long-term (104-105 years) trend of global glaciation. About 65,000 years ago, there was an observable change in the mode of SST variability as many low-latitude records have shown. These findings suggest that the SCS surface circulation and the East Asian winter monsoon systems are mainly driven by variations in global glaciation levels. The association of surface ocean cooling in the SCS with global climatic events suggests that fluctuations in the strength of the East Asian winter monsoon may be linked to shifts in the latitudinal position of the westerly winds and the Siberian high-pressure system.
Resumo:
Two high-resolution sediment cores from eastern Fram Strait have been investigated for sea subsurface and surface temperature variability during the Holocene (the past ca 12,000 years). The transfer function developed by Husum and Hald (2012) has been applied to sediment cores in order to reconstruct fluctuations of sea subsurface temperatures throughout the period. Additional biomarker and foraminiferal proxy data are used to elucidate variability between surface and subsurface water mass conditions, and to conclude on the Holocene climate and oceanographic variability on the West Spitsbergen continental margin. Results consistently reveal warm sea surface to subsurface temperatures of up to 6 °C until ca 5 cal ka BP, with maximum seawater temperatures around 10 cal ka BP, likely related to maximum July insolation occurring at that time. Maximum Atlantic Water (AW) advection occurred at surface and subsurface between 10.6 and 8.5 cal ka BP based on both foraminiferal and dinocyst temperature reconstructions. Probably, a less-stratified, ice-free, nutrient-rich surface ocean with strong AW advection prevailed in the eastern Fram Strait between 10 and 9 cal ka BP. Weakened AW contribution is found after ca 5 cal ka BP when subsurface temperatures strongly decrease with minimum values between ca 4 and 3 cal ka BP. Cold late Holocene conditions are furthermore supported by high planktic foraminifer shell fragmentation and high d18O values of the subpolar planktic foraminifer species Turborotalita quinqueloba. While IP25-associated indices as well as dinocyst data suggest a sustained cooling due to a decrease in early summer insolation and consequently sea-ice increase since about 7 cal ka BP in surface waters, planktic foraminiferal data including stable isotopes indicate a slight return of stronger subsurface AW influx since ca 3 cal ka BP. The observed decoupling of surface and subsurface waters during the later Holocene is most likely attributed to a strong pycnocline layer separating cold sea-ice fed surface waters from enhanced subsurface AW advection. This may be related to changes in North Atlantic subpolar versus subtropical gyre activity.
Resumo:
Diatom assemblages from 228 core-top samples were investigated to determine the modern geographic distributions of 10 major open ocean species or species groups in the Atlantic and Indian sectors of the Southern Ocean. Our study gives a more comprehensive view of the relationships between diatom distribution and environmental pressures than previous studies, as our modern database covers a much wider area, and additionally highlights the relationships with sea ice cover and concentration. The 10 species or species categories can mainly be lumped into three groupings. First, a cool open ocean grouping composed of Rhizosolenia pointed group, Thalassiosira gracilis group and Trichotoxon reinboldii with maximum relative abundances occurring within the maximum winter sea-ice edge. Second, a pelagic open ocean grouping composed of Fragilariopsis kerguelensis, Thalassiosira lentiginosa, Thalassiosira oliverana and Thalassiothrix spp. group with maximum occurrences at the Antarctic Polar Front. Third, a warm open ocean grouping with maximum abundances observed within the Polar Front Zone and composed of the Rhizosolenia rounded group, the Thalassionema nitzschioides var. nitzschioides group and the Thalassionema nitzschioides var. lanceolata. Comparisons of the abovementioned 10 species or species groups with modern February sea-surface temperatures and sea-ice duration and concentration reveal species-specific sedimentary distributions regulated both by sea-surface temperatures and sea ice conditions that support the use of diatom remains to reconstruct past variations of these environmental parameters via qualitative and transfer function approaches.
Resumo:
This paper gives a modern circumscription of Tropical/Subtropical diatoms regarding their relationship with sea-surface temperatures (SST) and sea ice cover. Diatoms from 228 core-top sediment samples collected from the Southern Ocean were studied to determine the geographic distribution of eight major diatom species/taxa preserved in surface sediments generally located north of the Subantarctic Front. The comparison of the relative contribution of diatom species with modern February SST and sea-ice cover reveals species-specific sedimentary distributions regulated both by water temperatures and sea ice conditions. Although selective preservation might have played some role, their presence in surface and downcore sediments from the Southern Ocean are reliable indicators of high SST and poleward transport of waters from the Tropical/Subtropical Atlantic. Our work supports the use of diatom remains to reconstruct past variations of these environmental parameters via qualitative and transfer function approaches.
Resumo:
Quantitative and qualitative analyses of planktonic foraminiferal assemblages from 134 core-top sediment samples collected along the western Iberian margin were used to assess the latitudinal and longitudinal changes in surface water conditions and to calibrate a Sea Surface Temperature (SST) transfer function for this seasonal coastal upwelling region. Q-mode factor analysis performed on relative abundances yielded three factors that explain 96% of the total variance: factor 1 (50%) is exclusively defined by Globigerina bulloides, the most abundant and widespread species, and reflects the modern seasonal (May to September) coastal upwelling areas; factor 2 (32%) is dominated by Neogloboquadrina pachyderma (dextral) and Globorotalia inflata and seems to be associated with the Portugal Current, the descending branch of the North Atlantic Drift; factor 3 (14%) is defined by the tropical-sub-tropical species Globigerinoides ruber (white), Globigerinoides trilobus trilobus, and G. inflata and mirrors the influence of the winter-time eastern branch of the Azores Current. In conjunction with satellite-derived SST for summer and winter seasons integrated over an 18 year period the regional foraminiferal data set is used to calibrate a SST transfer function using Imbrie & Kipp, MAT and SIMMAX(ndw) techniques. Similar predicted errors (RMSEP), correlation coefficients, and residuals' deviation from SST estimated for both techniques were observed for both seasons. All techniques appear to underestimate SST off the southern Iberia margin, an area mainly occupied by warm waters where upwelling occurs only occasionally, and overestimate SST on the northern part of the west coast of the Iberia margin, where cold waters are present nearly all year round. The comparison of these regional calibrations with former Atlantic and North Atlantic calibrations for two cores, one of which is influenced by upwelling, reveals that the regional one attests more robust paleo-SSTs than for the other approaches.
Resumo:
We analyze five high-resolution time series spanning the last 1.65 m.y.: benthic foraminiferal delta18O and delta13O, percent CaCO3, and estimated sea surface temperature (SST) at North Atlantic Deep Sea Drilling Project site 607 and percent CaCO3 at site 609. Each record is a multicore composite verified for continuity by splicing among multiple holes. These climatic indices portray changes in northern hemisphere ice sheet size and in North Atlantic surface and deep circulation. By tuning obliquity and precession components in the delta18O record to orbital variations, we have devised a time scale (TP607) for the entire Pleistocene that agrees in age with all K/Ar-dated magnetic reversals to within 1.5%. The Brunhes time scale is taken from Imbrie et al. [1984], except for differences near the stage 17/16 transition (0.70 to 0.64 Ma). All indicators show a similar evolution from the Matuyama to the Brunhes chrons: orbital eccentricity and precession responses increased in amplitude; those at orbital obliquity decreased. The change in dominance from obliquity to eccentricity occurred over several hundred thousand years, with fastest changes around 0.7 to 0.6 Ma. The coherent, in-phase responses of delta18O, delta13O, CaCO3 and SST at these rhythms indicate that northern hemisphere ice volume changes have controlled most of the North Atlantic surface-ocean and deep-ocean responses for the last 1.6 m.y. The delta13O, percent CaCO3, and SST records at site 607 also show prominent changes at low frequencies, including a prominent long-wavelength oscillation toward glacial conditions that is centered between 0.9 and 0.6 Ma. These changes appear to be associated neither with orbital forcing nor with changes in ice volume.
Resumo:
A submillennial resolution, radiolarian-based record of summer sea surface temperature (SST) documents the last five glacial to interglacial transitions at the subtropical front, southern Atlantic Ocean. Rapid fluctuations occur both during glacial and interglacial intervals, and sudden cooling episodes at glacial terminations are recurrent. Surface hydrography and global ice volume proxies from the same core suggest that summer SST increases prior to terminations lead global ice-volume decreases by 4.7 ± 3.7 ka (in the eccentricity band), 6.9 ± 2.5 ka (obliquity), and 2.7 ± 0.9 ka (precession). A comparison between SST and benthic delta13C suggests a decoupling in the response of northern subantarctic surface, intermediate, and deep water masses to cold events in the North Atlantic. The matching features between our SST record and the one from core MD97-2120 (southwest Pacific) suggests that the super-regional expression of climatic events is substantially affected by a single climatic agent: the Subtropical Front, amplifier and vehicle for the transfer of climatic change. The direct correlation between warmer DeltaTsite at Vostok and warmer SST at ODP Site 1089 suggests that warmer oceanic/atmospheric conditions imply a more southward placed frontal system, weaker gradients, and therefore stronger Agulhas input to the Atlantic Ocean.
Resumo:
The late Neogene was a time of cryosphere development in the northern hemisphere. The present study was carried out to estimate the sea surface temperature (SST) change during this period based on the quantitative planktonic foraminiferal data of 8 DSDP sites in the western Pacific. Target factor analysis has been applied to the conventional transfer function approach to overcome the no-analog conditions caused by evolutionary faunal changes. By applying this technique through a combination of time-slice and time-series studies, the SST history of the last 5.3 Ma has been reconstructed for the low latitude western Pacific. Although the present data set is close to the statistical limits of factor analysis, the clear presence of sensible variations in individual SST time-series suggests the feasibility and reliability of this method in paleoceanographic studies. The estimated SST curves display the general trend of the temperature fluctuations and reveal three major cool periods in the late Neogene, i.e. the early Pliocene (4.7 3.5 Ma), the late Pliocene (3.1-2.7 Ma), and the latest Pliocene to early Pleistocene (2.2-1.0 Ma). Cool events are reflected in the increase of seasonality and meridional SST gradient in the subtropical area. The latest Pliocene to early Pleistocene cooling is most important in the late Neogene climatic evolution. It differs from the previous cool events in its irreversible, steplike change in SST, which established the glacial climate characteristic of the late Pleistocene. The winter and summer SST decreased by 3.3-5.4°C and 1.0 2.1C in the subtropics, by 0.9°C and 0.6C in the equatorial region, and showed little or no cooling in the tropics. Moreover, this cooling event occurred as a gradual SST decrease during 2.2 1.0 Ma at the warmer subtropical sites, while that at cooler subtropical site was an abrupt SST drop at 2.2 Ma. In contrast, equatorial and tropical western Pacific experienced only minor SST change in the entire late Neogene. In general, subtropics was much more sensitive to climatic forcing than tropics and the cooling events were most extensive in the cooler subtropics. The early Pliocene cool periods can be correlated to the Antarctic ice volume fluctuation, and the latest Pliocene early Pleistocene cooling reflects the climatic evolution during the cryosphere development of the northern hemisphere.