212 resultados para Radioactive pollution of water


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Kara Sea is an area uniquely suitable for studying processes in the river-sea system. This is a shallow sea, into which two great Siberian rivers, Yenisei and Ob, flow. From 1995 to 2003, the sea was studied by six international expeditions onboard the R/V Akademik Boris Petrov. This publication summarizes the results obtained, within the framework of this project, at the Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences. Various hydrogeochemical parameters, concentrations and isotopic composition of organic and carbonate carbon of the sediments, plankton, particulate organic matter, hydrocarbons, and dissolved CO2 were examined throughout the whole sea area at more than 200 sites. The d13C varies from -22 and -24 per mil where Atlantic waters enter the Kara Sea and in the north-eastern part of the water area to -27 per mil in the Yenisei and Ob estuaries. The value of d13C of the plankton is only weakly correlated with the d13C of the organic matter from the sediments and is lower by as much as 3-4 per mil. The paper presents the results obtained from a number of meridional river-sea profiles. It was determined from the relations between the isotopic compositions of plankton and particulate matter that the river waters carry material consisting of 70% detrital-humus matter and 30% planktonogenic material in the river part, and the material contained in the offshore waters consists of 30% terrigenous components, with the contribution of bioproducers amounting to 70%. The carbon isotopic composition of the plankton ranges from -29 to -35 per mil in the riverine part, from -28 to -27 per mil in the estuaries, and from -27.0 to -25 per mil in the marine part. The relative lightness of the carbon isotopic composition of plankton in Arctic waters is explained by the temperature effect, elevated CO2 concentrations, and long-distance CO2 supply to the sea with river waters. The data obtained on the isotopic composition of CO2 in the surface waters of the Kara Sea were used to map the distribution of d13C. The complex of hydrocarbon gases extracted from the waters included methane, C2-C5, and unsaturated C2=-C4= hydrocarbons, for which variations in the concentrations in the waters were studied along river-estuary-sea profiles. The geochemistry of hydrocarbon gases in surface fresh waters is characterized by comparable concentrations of methane (0.3-5 µl/l) and heavier hydrocarbons, including unsaturated ones. Microbiological methane with d13C from -105 to -90 per mil first occurs in the sediments at depths of 40-200 cm. The sediments practically everywhere display traces of methane oxidation in the form of a shift of the d13C of methane toward higher values and the occurrence of autogenic carbonate material, including ikaite, enriched in the light isotope. Ikaite (d13C from -25 to -60 per mil) was found and examined in several profiles. The redox conditions in the sediments varied from normal in the southern part of the sea to highly oxidized along the Novaya Zemlya Trough. Vertical sections through the sediments of the latter exemplify the complete suppression of the biochemical activity of microorganisms. Our data provide insight into the biogeochemistry of the Kara Sea and make it possible to specify the background values needed for ecological control during the future exploration operations and extraction of hydrocarbons in the Kara Sea.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two water samples and two sediment samples taken in 1965 by the R. V. "Meteor" in the area of the hot salt brine of the Atlantis II-Deep were chemically investigated, and in addition the sediment samples were subjected to X-ray and optical analysis. The investigation of the sulfur-isotope-ratios showed the same values for all water samples. This information combined with the Ca-sulfate solubility data leads us to conclude that, for the most part, the sulfate content of the salt brine resulted from mixing along the boundary with the normal seawater. In this boundary area gypsum or anhydrite is formed which sinks down to the deeper layers of the salt brine where it is redisolved when the water becomes undersaturated. In the laboratory, formation of CaS04 precipitate resulted from both the reheating of the water sample from the uppermost zone of the salt brine to the in-situ-temperature as well as by the mixing of the water sample with normal Red Sea water. The iron and manganese delivered by the hot spring is separated within the area of the salt brine by their different redox-potentials. Iron is sedimented to a high amount within the salt brine, while, as evidenced by its small amounts in all sediment samples, the more easily reducible manganese is apparently carried out of the area before sedimentation can take place. The very good layering of the salt brine may be the result of the rough bottom topography with its several progressively higher levels allowing step-like enlargements of the surface areas of each successive layer. Each enlargement results in larger boundary areas along which more effective heat transfer and mixing with the next layer is possible. In the sediment samples up to 37.18% Fe is found, mostly bound as very poorly crystallized iron hydroxide. Pyrite is present in only very small amounts. We assume that the copper is bound mostly as sulfide, while the zinc is most likely present in an other form. The sulfur-isotope-investigations indicate that the sulfur in the sediment, bound as pyrite and sulfides, is not a result of bacterical sulfate-reduction in the iron-rich mud of the Atlantis II-Deep, but must have been brought up with the hot brine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data on the N2O contents of marine sea water from the Northeast Atlantic Ocean are presented. The N2O content of marine air is rather constant. The data are in accordance with earlier measurements. The sea water down to depth greater tha 1000 meters is considerably aupersaturated with N2O with respect to air. Supersaturation values obtain from surface water allow the conclusion that part of the North Atlantic acts as a net cource of atmospheric N2O.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Limited information on the East Antarctic Ice Sheet (EAIS) geometry during Marine Isotope Stage 3 (MIS 3; 60-25 ka) restricts our understanding of its behaviour during periods of climate and sea level change. Ice sheet models forced by global parameters suggest an expanded EAIS compared to the Holocene during MIS 3, but field evidence from East Antarctic coastal areas contradicts such modelling, and suggests that the ice sheet margins were no more advanced than at present. Here we present a new lake sediment record, and cosmogenic exposure results from bedrock, which confirm that Rauer Group (eastern Prydz Bay) was ice-free for much of MIS 3. We also refine the likely duration of the Last Glacial Maximum (LGM) glaciation in the region. Lacustrine and marine sediments from Rauer Group indicate the penultimate period of ice retreat predates 50 ka. The lacustrine record indicates a change from warmer/wetter conditions to cooler/drier conditions after ca. 35 ka. Substantive ice sheet re-advance, however, may not have occurred until much closer to 20 ka. Contemporary coastal areas were still connected to the sea during MIS 3, restricting the possible extent of grounded ice in Prydz Bay on the continental shelf. In contrast, relative sea levels (RSL) deduced from field evidence indicate an extra ice load averaging several hundred metres thicker ice across the Bay between 45 and 32 ka. Thus, ice must either have been thicker immediately inland (with a steeper ice profile), or there were additional ice domes on the shallow banks of the outer continental shelf. Further work is required to reconcile the differences between empirical evidence of past ice sheet histories, and the history predicted by ice sheet models from far-field temperature and sea level records.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter discusses the formation and distribution of some metals in ocean-floor manganese nodules in the light of the observed data in the literature and thermodynamic and kinetic considerations of the oxidation of metal ions in the oceanic environment. There are, in general, two major schools of thought on the mechanism of incorporation of the minor elements such as nickel, copper, and cobalt with the major elements such as manganese and iron. One is the lattice substitution mechanism and the other the adsorption mechanism. If the mechanism is lattice substitution, extraction of the metal ions is not possible unless the lattice of the major elements is first broken and exchanged with other ions from the bulk solution. Consequently, the leaching behavior of minor elements should display a very close relationship with that of major elements.