665 resultados para Pink bollworm


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Planktonic foraminiferal and nannoplankton stratigraphy of the Pliocene-Quatemary Sediments of the northern half of the Atlantic Ocean from the equator up to the Rockall Plateau and the Norwegian Sea, is considered. Lowlatitude zonations were used for the subdivision of the Pliocene and Quaternary Sediments of different climatic belts, and certain subglobal zonal units were recognized. Variations in the degree of resolution of the zonation in different latitudes were revealed; the resolution of zonal scales based on calcareous plankton diminishes northwards. Changes of taxonomic composition of the zonal foraminifer and nannoplankton assemblages within various latitudinal belts of the Atlantic were analyzed taking into consideration the influence of climatic factors and of local bionomic conditions. Correlation with the magnetostratigraphic time-scale permitted the establishment of the most reliable appearance and disappearance datums (datum planes) of planktonic foraminifer and nannoplankton species. Paleontologic plates demonstrate some guide forms of two groups of calcareous plankton, and a short description of the taxa is given in the text. Major stratigraphic problems of Pliocene and Quaternary marine deposits are discussed. The monograph can be used in different geological investigations by specialists in geology, paleontology, and oceanology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eight box cores from the tropical Atlantic were studied in detail with regard to foraminiferal oxygen isotopes, radiocarbon, and Globorotalia menardii abundance. A standard Atlantic oxygen-isotope signal was reconstructed for the last 20,000 yr. It is quite similar to the west-equatorial Pacific signal published previously. Deglaciation is seen to occur in two steps which are separated by a pause. Onset of deglaciation is after 15,000 yr B.P. The pause is centered between 11,000 and 12,000 yr B.P., but may be correlative with the Younger Dryas (10,500 yr B.P.) if allowance is made for a scale shift due to mixing processes on the sea floor. Step 2 is centered near 10,000 yr B.P. and is followed by a brief excursion toward light oxygen values. This excursion (the M event) may correlate with the Gulf of Mexico meltwater spike.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The central problem of late Quaternary circulation in the South Atlantic is its role in transfer of heat to the North Atlantic, as this modifies amplitude, and perhaps phase, of glacialinterglacial fluctuations. Here we attempt to define the problem and establish ways to attack it. We identify several crucial elements in the dynamics of heat export: (1) warm-water pile-up (and lack thereof) in the Western equatorial Atlantic, (2) general spin-up (or spin-down) of central gyre, tied to SE trades, (3) opening and closing of Cape Valve (Agulhas retroflection), (4) deepwater E-W asymmetry. Means for reconstruction are biogeography, stable isotopes, and productivity proxies. Main results concern overall glacial-interglacial contrast (less pile-up, more spin-up, Cape Valve closed, less NADW during glacial time), dominance of precessional signal in tropics, phase shifts in precessional response. To generate working hypotheses about the dynamics of surface water circulation in the South Atlantic we employ Croll's paradigm that glacial - interglacial fluctuations are analogous to seasonal fluctuations. Our general picture for the last 300 kyrs is that, as concerns the South Atlantic, intensity of surface water (heat) transport depends on the strength of the SE trades. From various lines of evidence it appears that strenger SE trades appeared during glacials and cold substages during interglacials, analogous to conditions in southern winter (August).

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The western Iberian margin has been one of the key locations to study abrupt glacial climate change and associated interhemispheric linkages. The regional variability in the response to those events is being studied by combining a multitude of published and new records. Looking at the trend from Marine Isotope Stage (MIS) 10 to 2, the planktic foraminifer data, conform with the alkenone record of Martrat et al. [2007], shows that abrupt climate change events, especially the Heinrich events, became more frequent and their impacts in general stronger during the last glacial cycle. However, there were two older periods with strong impacts on the Atlantic meridional overturning circulation (AMOC): the Heinrich-type event associated with Termination (T) IV and the one occurring during MIS 8 (269 to 265 ka). During the Heinrich stadials of the last glacial cycle, the polar front reached the northern Iberian margin (ca. 41°N), while the arctic front was located in the vicinity of 39°N. During all the glacial periods studied, there existed a boundary at the latter latitude, either the arctic front during extreme cold events or the subarctic front during less strong coolings or warmer glacials. Along with these fronts sea surface temperatures (SST) increased southward by about 1°C per one degree of latitude leading to steep temperature gradients in the eastern North Atlantic and pointing to a close vicinity between subpolar and subtropical waters. The southern Iberian margin was always bathed by subtropical water masses - surface and/ or subsurface ones -, but there were periods when these waters also penetrated northward to 40.6°N. Glacial hydrographic conditions were similar during MIS 2 and 4, but much different during MIS 6. MIS 6 was a warmer glacial with the polar front being located further to the north allowing the subtropical surface and subsurface waters to reach at minimum as far north as 40.6°N and resulting in relative stable conditions on the southern margin. In the vertical structure, the Greenland-type climate oscillations during the last glacial cycle were recorded down to 2465 m during the Heinrich stadials, i.e. slightly deeper than in the western basin. This deeper boundary is related to the admixing of Mediterranean Outflow Water, which also explains the better ventilation of the intermediate-depth water column on the Iberian margin. This compilation revealed that latitudinal, longitudinal and vertical gradients existed in the waters along the Iberian margin, i.e. in a relative restricted area, but sufficient paleo-data exists now to validate regional climate models for abrupt climate change events in the northeastern North Atlantic Ocean.