956 resultados para ISOTOPIC CONSTRAINTS
Resumo:
The calcium isotopic compositions (d44Ca) of 30 high-purity nannofossil ooze and chalk and 7 pore fluid samples from ODP Site 807A (Ontong Java Plateau) are used in conjunction with numerical models to determine the equilibrium calcium isotope fractionation factor (a_s-f) between calcite and dissolved Ca2+ and the rates of post-depositional recrystallization in deep sea carbonate ooze. The value of a_s-f at equilibrium in the marine sedimentary section is 1.0000+/-0.0001, which is significantly different from the value (0.9987+/-0.0002) found in laboratory experiments of calcite precipitation and in the formation of biogenic calcite in the surface ocean. We hypothesize that this fractionation factor is relevant to calcite precipitation in any system at equilibrium and that this equilibrium fractionation factor has implications for the mechanisms responsible for Ca isotope fractionation during calcite precipitation. We describe a steady state model that offers a unified framework for explaining Ca isotope fractionation across the observed precipitation rate range of ~14 orders of magnitude. The model attributes Ca isotope fractionation to the relative balance between the attachment and detachment fluxes at the calcite crystal surface. This model represents our hypothesis for the mechanism responsible for isotope fractionation during calcite precipitation. The Ca isotope data provide evidence that the bulk rate of calcite recrystallization in freshly-deposited carbonate ooze is 30-40%/Myr, and decreases with age to about 2%/Myr in 2-3 million year old sediment. The recrystallization rates determined from Ca isotopes for Pleistocene sediments are higher than those previously inferred from pore fluid Sr concentration and are consistent with rates derived for Late Pleistocene siliciclastic sediments using uranium isotopes. Combining our results for the equilibrium fractionation factor and recrystallization rates, we evaluate the effect of diagenesis on the Ca isotopic composition of marine carbonates at Site 807A. Since calcite precipitation rates in the sedimentary column are many orders of magnitude slower than laboratory experiments and the pore fluids are only slightly oversaturated with respect to calcite, the isotopic composition of diagenetic calcite is likely to reflect equilibrium precipitation. Accordingly, diagenesis produces a maximum shift in d44Ca of +0.15? for Site 807A sediments but will have a larger impact where sedimentation rates are low, seawater circulates through the sediment pile, or there are prolonged depositional hiatuses.
Relative abundance and isotopic composition of calcite, dolomite and siderite from ODP Leg 164 sites
Resumo:
Authigenic carbonate mineral distributions are compared to pore-water geochemical profiles and used to evaluate diagenesis within sedimentary sections containing gas hydrates on the Blake Ridge (Ocean Drilling Program Sites 994, 995, and 997). Carbonate mineral distributions reveal three distinct diagenetic zones. (1) Carbonate minerals in the upper 20 m are primarily biogenic and show no evidence of diagenesis. The d13C and d18O values of calcite within this zone reflects marine carbonate (~0 per mil Peedee belemnite [PDB]) formed in equilibrium with seawater. (2) Between 20 and 100 mbsf, calcite d13C values are distinctly negative (as low as -7.0 per mil), and authigenic dolomite is common (~2-40 wt%) with d13C values between -3.6 per mil and 13.7 per mil. (3) Below 100 mbsf, dolomite abundance decreases to trace amounts, and disseminated siderite becomes the pervasive (~2-30 wt%) authigenic carbonate. Both siderite textures and stable isotope values indicate direct precipitation from pore fluids rather than dolomite replacement. The d13C and d18O values of siderite vary from 5.0 per mil to 10.9 per mil and 2.9 per mil to 7.6 per mil, respectively. Comparisons between the d13C profiles of dissolved inorganic carbon (DIC) and pore-water concentration gradients, with the d13C and d18O values of authigenic carbonates, delineate a distinct depth zonation for authigenic carbonate mineral formation. Coincidence of the most negative d13CDIC values (<=-38 per mil) and negative d13C values of both calcite and dolomite, with pore-water alkalinity increases, sulfate depletion, and decreases in interstitial Ca2+ and Mg2+ concentrations at and below 20 mbsf, suggests that authigenic calcite and dolomite formation is initiated at the base of the sulfate reduction zone (~21 mbsf) and occurs down to ~100 mbsf. Siderite formation apparently occurs between 120 and 450 mbsf; within, and above, the gas hydrate-bearing section of the sediment column (~200-450 mbsf). Siderite d13C and d18O values are nearly uniform from their shallowest occurrence to the bottom of the sedimentary section. However, present-day pore-water d13CDIC values are only similar to siderite d13C values between ~100 and 450 mbsf. Furthermore, calculated equilibrium d18O values of siderite match the measured 18O values of siderite between 120 and 450 mbsf. This interval is characterized by high alkalinity (40-120 mM) and low Ca2+ and Mg2+ concentrations, conditions that are consistent with siderite formation.
Resumo:
Nineteen chert samples from a continuous core of the DSDP (Leg 17, Hole 167) were analysed for Ge; in addition we analysed five samples from other cores. The ages range between Late Jurassic, and Late Eocene. The concentration of Ge changes with age from 0.87 ppm in the oldest samples to 0.23 ppm in the youngest (equivalent to a Ge/Si decrease from 0.00000072 to 0.00000019). The decrease in Ge/Si is well correlated with the 87Sr/86Sr ratio in sea water of the relevant age. The interpretation of this trend may reflect: (a) different levels of Ge/Si in sea water as a result of a different ratio between hydrothermal and riverine input, (b) a diagenetic trend in siliceous sediments, (c) recording (by radiolaria) a transition between a radiolaria dominated ocean (with relatively high Ge/Si ratios in sea water) and diatom domination or (d) a combination of the above.
Resumo:
Sulfide mineralogy, sulfur contents, and sulfur isotopic compositions were determined for samples from the 500-m gabbroic section of Ocean Drilling Program Hole 735B in the southwest Indian Ocean. Igneous sulfides (pyrrhotite, chalcopyrite, pentlandite, and troilite) formed by accumulation of immiscible sulfide droplets and crystallization from intercumulus liquids. Primary sulfur contents average around 600 ppm, with a mean sulfide d34S value near 0 per mil, similar to the isotopic composition of sulfur in mid-ocean ridge basalt glass. Rocks from a 48-m interval of oxide gabbros have much higher sulfur contents (1090-2530 ppm S) due to the increased solubility of sulfur in Fe-rich melts. Rocks that were locally affected by early dynamothermal metamorphism (e.g., the upper 40 m of the core) have lost sulfur, averaging only 90 ppm S. Samples from the upper 200 m of the core, which underwent subsequent hydrothermal alteration, also lost sulfur and contain an average of 300 ppm S. Monosulfide minerals in some of the latter have elevated d34S values (up to +6.9 per mil), suggesting local incorporation of seawater-derived sulfur. Secondary sulfides (pyrrhotite, chalcopyrite, pentlandite, troilite, and pyrite) are ubiquitous in trace amounts throughout the core, particularly in altered olivine and in green amphibole. Pyrite also locally replaces igneous pyrrhotite. Rocks containing secondary pyrite associated with late low-temperature smectitic alteration have low d34S values for pyrite sulfur (to - 16.6 per mil). These low values are attributed to isotopic fractionation produced during partial oxidation of igneous sulfides by cold seawater. The rocks contain small amounts of soluble sulfate (6% of total S), which is composed of variable proportions of seawater sulfate and oxidized igneous sulfur. The ultimate effect of secondary processes on layer 3 gabbros is a loss of sulfur to hydrothermal fluids, with little or no net change in d34S.
Resumo:
Ocean Drilling Program Site 704 in the subantarctic South Atlantic was drilled to investigate the response of the Southern Ocean to climatic and Oceanographic developments during the late Neogene. Stable oxygen and carbon isotopes of fine-fraction (<63 µm) carbonate were analyzed to supplement similar analyses of benthic and planktonic foraminifers. The fine fraction is generally composed primarily of coccoliths, and isotopic analyses of the fine fraction were made to complement the foraminiferal analyses. The isotopic curves thus generated suggest paleoceanographic changes not recognizable by the use of benthic and planktonic foraminifers alone. The global Chron 6 carbon isotope shift, found at 253-244 mbsf (6.39-6.0 Ma) at Site 704 in the planktonic and benthic record, is seen in the fine-fraction d13C record as a gradual decrease from 255 mbsf (6.44 Ma) to 210 mbsf (4.24 Ma). At 170 mbsf, mean d18O values of Neogloboquadrina pachyderma increase by 0.6 per mil-0.7 per mil (Hodell and Ciesielski, 1991, doi:10.2973/odp.proc.sr.114.150.1991), reflecting decreased temperature and increased continental ice volume. Accumulation rates increase by 3.3 times above this depth (which corresponds to an age of 2.5 Ma), suggesting increased upwelling and biologic productivity. Carbon isotopic values of fine-fraction carbonate decrease by about 1.5 per mil at 2.6 Ma; however, no change is recorded in the d13C of N. pachyderma. The fine-fraction d13C shift slightly precedes an average l per mil decrease in d13C in benthic foraminifers. The cause of the benthic d13C shift (most likely due to a change in deep water circulation; Hodell and Ciesielski, 1991) is probably not directly related to the fine-fraction shift. The fine-fraction shift is most likely caused by (1) a change in the upwelling to productivity ratio at this site, with increased upwelling bringing lighter carbon to surface waters, more productivity, and higher sedimentation rates and (2) a change in the particle composition of the fine fraction. The increased upwelling is probably due to a northward migration of the Antarctic Polar Front to a position nearer Site 704.
Resumo:
Massive clinoptilolite authigenesis was observed at about 1105 meters below sea floor (mbsf) in lower Miocene wellcompacted carbonate periplatform sediments from the Great Bahama Bank [Ocean Drilling Program, ODP Leg 166, Site 1007]. The diagenetic assemblage comprises abundant zeolite crystallized within foraminifer tests and sedimentary matrix, as well as Mg smectites. In carbonate-rich deposits, the formation of the zeolite requires a supply of silica. Thus, the objective of the study is to determine the origin of the silica supply, its diagenetic evolution, and consequently the related implications on interpretation of the sedimentary record, in terms of local or global paleoceanographic change. For lack of evidence for any volcaniclastic input or traces of Si-enriched deep fluids circulation, an in situ biogenic source of silica is validated by isotopic data and chemical modeling for the formation of such secondary minerals in shallow-water carbonate sequences. Geochemical and strontium isotopic data clearly establish the marine signature of the diagenetic zeolite, as well as its contemporaneous formation with the carbonate deposition (Sr model ages of 19.6-23.2 Ma). The test of saturation for the pore fluids specifies the equilibrium state of the present mineralogical assemblage. Seawater-rock modeling specifies that clinoptilolite precipitates from the dissolution of biogenic silica, which reacts with clay minerals. The amount of silica (opal-A) involved in the reaction has to be significant enough, at least 10 wt.%, to account for the observed content of clinoptilolite occurring at the most zeolite-rich level. Modeling also shows that the observed amount of clinoptilolite (~19%) reflects an in situ and short-term reaction due to the high reactivity of primary biogenic silica (opal-A) until its complete depletion. The episodic occurrence of these well-lithified zeolite-rich levels is consistent with the occurrence of seismic reflectors, particularly the P2 seismic sequence boundary located at 1115 mbsf depth and dated as 23.2 Ma. The age range of most zeolitic sedimentary levels (biostratigraphic ages of 21.5-22 Ma) correlates well with that of the early Miocene glaciation Mi-1 and Mi-1a global events. Thus, the clinoptilolite occurrence in the shallow carbonate platform environment far from volcanogenic supply, or in other sensitive marine areas, is potentially a significant new proxy for paleoproductivity and oceanic global events, such as the Miocene events, which are usually recognized in deep-sea pelagic sediments and high latitude deposits.
Resumo:
Trace element and isotopic signatures of magmatic rock samples from ODP Hole 642E at the Vøring Plateau provide insight into the interaction processes of mantle melt with crust during the initial magma extrusion phases at the onset of the continental breakup. The intermediate (basaltic-andesitic) to felsic (dacitic and rhyolitic) Lower Series magmas at ODP Hole 642E appear to be produced by large amounts of melting of upper crustal material. This study not only makes use of the traditional geochemical tools to investigate crust-mantle interaction, but also explores the value of Cs geochemistry as an additional tool. The element Cs forms the largest lithophile cation, and shows the largest contrast in concentration between (depleted) mantle and continental crust. As such it is a very sensitive indicator of involvement of crustal material. The Cs data reinforce the conclusion drawn from isotopic signatures that the felsic magmas are largely anatectic crustal melts. The down-hole geochemical variation within ODP Hole 642E defines a decreasing continental crustal influence from the Lower Series into the Upper Series. This is essential information to distinguish intrinsic geochemical properties of the mantle melts from signatures imposed by crustal contamination. A comparison with data from the SE Greenland margin highlights the compositional asymmetry of the crust-mantle interactions at both sides of the paleo-Iapetus suture. While Lower Series and Middle Series rocks from the SE Greenland margin have isotopic signatures reflecting interactions with lower and middle crust, such signatures have not been observed at the mid-Norwegian margin. The geochemical data either point to a dissimilar Caledonian crustal composition and/or to different geodynamic pre-breakup rifting history at the two NE Atlantic margin segments.
Resumo:
The opaque mineralogy and the contents and isotope compositions of sulfur in serpentinized peridotites from the MARK (Mid-Atlantic Ridge, Kane Fracture Zone) area were examined to understand the conditions of serpentinization and evaluate this process as a sink for seawater sulfur. The serpentinites contain a sulfur-rich secondary mineral assemblage and have high sulfur contents (up to 1 wt.%) and elevated d34S_sulfide (3.7 to 12.7?). Geochemical reaction modeling indicates that seawater-peridotite interaction at 300 to 400°C alone cannot account for both the high sulfur contents and high d34S_sulfide. These require a multistage reaction with leaching of sulfide from subjacent gabbro during higher temperature (~400°C) reactions with seawater and subsequent deposition of sulfide during serpentinization of peridotite at ~300°C. Serpentinization produces highly reducing conditions and significant amounts of H2 and results in the partial reduction of seawater carbonate to methane. The latter is documented by formation of carbonate veins enriched in 13C (up to 4.5?) at temperatures above 250°C. Although different processes produce variable sulfur isotope effects in other oceanic serpentinites, sulfur is consistently added to abyssal peridotites during serpentinization. Data for serpentinites drilled and dredged from oceanic crust and from ophiolites indicate that oceanic peridotites are a sink for up to 0.4 to 6.0 mln ton seawater S per year. This is comparable to sulfur exchange that occurs in hydrothermal systems in mafic oceanic crust at midocean ridges and on ridge flanks and amounts to 2 to 30% of the riverine sulfate source and sedimentary sulfide sink in the oceans. The high concentrations and modified isotope compositions of sulfur in serpentinites could be important for mantle metasomatism during subduction of crust generated at slow spreading rates.
Resumo:
The reconstruction of the stable carbon isotope evolution in atmospheric CO2 (d13Catm ), as archived in Antarctic ice cores, bears the potential to disentangle the contributions of the different carbon cycle fluxes causing past CO2 variations. Here we present a new record of d13Catm before, during and after the Marine Isotope Stage 5.5 (155 000 to 105 000 years BP). The record was derived with a well established sublimation method using ice from the EPICA Dome C (EDC) and the Talos Dome ice cores in East Antarctica. We find a 0.4 permil shift to heavier values between the mean d13Catm level in the Penultimate (~ 140 000 years BP) and Last Glacial Maximum (~ 22 000 years BP), which can be explained by either (i) changes in the isotopic composition or (ii) intensity of the carbon input fluxes to the combined ocean/atmosphere carbon reservoir or (iii) by long-term peat buildup. Our isotopic data suggest that the carbon cycle evolution along Termination II and the subsequent interglacial was controlled by essentially the same processes as during the last 24 000 years, but with different phasing and magnitudes. Furthermore, a 5000 years lag in the CO2 decline relative to EDC temperatures is confirmed during the glacial inception at the end of MIS 5.5 (120 000 years BP). Based on our isotopic data this lag can be explained by terrestrial carbon release and carbonate compensation.
Resumo:
Geochemical analyses of extraordinarily well preserved late Aptian-early Albian foraminifera from Blake Nose (Ocean Drilling Program Site 1049) reveal rapid shifts of d18O, d13C, and 87Sr/88Sr in the subtropical North Atlantic that may be linked to a major planktic foraminifer extinction event across the Aptian/Albian boundary. The abruptness of the observed geochemical shifts and their coincidence with a sharp lithologic contact is explained as an artifact of a previously undetected hiatus of 0.8-1.4 million years at the boundary contact, but the values before and after the hiatus indicate that major oceanographic changes occurred at this time. 87Sr/88Sr increase by ~0.000200, d13C values decrease by 1.5 per mil to 2.2 per mil, and d18O values decrease by ~1.0 per mil (planktics) to 0.5 per mil (benthics) across the hiatus. Further, both 87Sr/88Sr ratios and d18O values during the Albian are anomalously high. The 87Sr/88Sr values deviate from known patterns to such a degree that an explanation requires either the presence of inter-basin differences in seawater 87Sr/88Sr during the Albian or revision of the seawater curve. For d18O, planktic values in some Aptian samples likely reflect a diagenetic overprint, but preservation is excellent in the rest of the section. In well preserved material, benthic foraminiferal values are largely between 0.5 and 0.0 per mil and planktic samples are largely between 0.0 per mil to -1.0 per mil, with a brief excursion to -2.0 per mil during OAE 1b. Using standard assumptions for Cretaceous isotopic paleotemperature calculations, the d18O values suggest bottom water temperatures (at ~1000 -1500 m) of 8-10°C and surface temperatures of 10-14°C, which are 4-6°C and 10-16°C cooler, respectively, than present-day conditions at the same latitude. The cool subtropical sea surface temperature estimates are especially problematic because other paleoclimate proxy data for the mid-Cretaceous and climate model predictions suggest that subtropical sea surface temperatures should have been the same as or warmer than at present. Because of their exquisite preservation, whole scale alteration of the analyzed foraminifera is an untenable explanation. Our proposed solution is a high evaporative fractionation factor in the early Albian North Atlantic that resulted in surface waters with higher d18O values at elevated salinities than commonly cited in Cretaceous studies. A high fractionation factor is consistent with high rates of vapor export and a vigorous hydrological cycle and, like the Sr isotopes, implies limited connectivity among the individual basins of the Early Cretaceous proto-Atlantic ocean.
Resumo:
A comprehensive (mineralogical, geochronological, and geochemical) study of zircons from an eclogitized gabbronorite dike was carried out in order to identify reliable indicators (mineralogical and geochronological) of genesis of the zircons in their various populations and, correspondingly, ages of certain geological events (magmatic crystallization of the gabbroids, their eclogitization, and overprinted retrograde metamorphism). Three populations of zircons separated from two rock samples comprised xenogenic, magmatic (gabbroic), and metamorphic zircons, with the latter found exclusively in the sample of retrograded eclogitized gabbroids. Group I zircons are xenogenic and have a Meso- to Neoarchean age. Mineral inclusions in them (quartz, apatite, biotite, and chlorite) are atypical of gabbroids, and geochemistry of these zircons is very diverse. Group II zircons contain mineral inclusions of ortho- and clinopyroxene and are distinguished for their very high U, Th, Pb, and REE concentrations and Th/U ratios. These zircons formed during the late magmatic crystallization of the gabbroids at temperatures of 1150-1160°C, and their U-Pb age 2389±25 Ma corresponds to this process. Eclogite mineral assemblages crystallized shortly after the magmatic process, as follows from the fact that marginal portions of prismatic zircons contain clinopyroxene inclusions with elevated contents of the jadeite end-member. Group III zircons contain rare amphibole and biotite inclusions and have low Ti, Y, and REE concentrations, low Th/U ratios, high Hf concentrations, contain more HREE than LREE, and have U-Pb age 1911±9.5 Ma, which corresponds to age of overprinted amphibolite-facies metamorphism.