233 resultados para Dy


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Contents of Fe, Mn, Al, P, and rare earth elements (REE) in ferruginous nodules and host sediments of the eastern Barents Sea were studied. A direct Fe-P correlation in reactive components of the sediments and nodules was found. The nodules were shown to be formed through Fe(II) oxidation in the surface layer of sediments and cementation of terrigenous fraction of sediments by Fe(III) oxyhydroxides. The latter accumulate phosphorus due to processes of sorption - co-precipitation, by forming Fe(III) hydrophosphates. REE composition in the sediments and nodules normalized to NASC contents is characterized by increased proportion of light REE that may be caused by regional features of their sources. Due to significant share of terrigenous matter in the Fe nodules (up to 65% for Nd), REE composition of bulk samples is similar to that of host sediments. A negative cerium anomaly in composition of reactive REE may result from REE sorption from seawater. REE bulk composition of a ferruginous crust is closer to that of seawater than one of the ferruginous nodules from the sediments because of essentially lower content of diluent terrigenous matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abundances of rare earth elements (REE), Ba, and Sr and isotopic ratios of Sr, Nd, and Ce were determined for six samples of basalts drilled at Hole 504B on Leg 111 of the Ocean Drilling Program. Analyses found that these basalts are the most depleted in Sr, Ba, and light REE among mid-ocean ridge basalts (MORB); Ba depletion is especially notable. On the other hand, Sr, Nd, and Ce isotopic ratios for basalts from Hole 504B are within the range of typical MORB values.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The "Ko'olau" component of the Hawaiian mantle plume represents an extreme (EM1-type) end member of Hawaiian shield lavas in radiogenic isotope space, and was defined on the basis of the composition of subaerial lavas exposed in the Makapu'u section of Ko'olau Volcano. The 679 m-deep Ko'olau Scientific Drilling Project (KSDP) allows the long-term evolution of Ko'olau Volcano to be reconstructed and the longevity of the "Ko'olau" component in the Hawaiian plume to be tested. Here, we report triple spike Pb isotope and Sr and Nd isotope data on KSDP core samples, and rejuvenation stage Honolulu Volcanics (HV) (together spanning ~2.8 m.y.), and from ~110 Ma basalts from ODP Site 843, thought to be representative of the Pacific lithosphere under Hawai'i. Despite overlapping ranges in Pb isotope ratios, KSDP and HV lavas form two distinct linear arrays in 208Pb/204Pb-206Pb/204Pb isotope space. These arrays intersect at the radiogenic end indicating they share a common component. This "Kalihi" component has more radiogenic Pb, Nd, Hf, but less radiogenic Sr isotope ratios than the "Makapu'u" component. The mixing proportions of these two components in the lavas oscillated through time with a net increase in the "Makapu'u" component upsection. Thus, the "Makapu'u" enriched component is a long-lived feature of the Hawaiian plume, since it is present in the main shield-building stage KSDP lavas. We interpret the changes in mixing proportions of the Makapu'u and Kalihi components as related to changes in both the extent of melting as well as the lithology (eclogite vs. peridotite) of the material melting as the volcano moves away from the plume center. The long-term Nd isotope trend and short-term Pb isotope fluctuations seen in the KSDP record cannot be ascribed to a radial zonation of the Hawaiian plume: rather, they reflect the short length-scale heterogeneities in the Hawaiian mantle plume. Linear Pb isotope regressions through the HV, recent East Pacific Rise MORB and ODP Site 843 datasets are clearly distinct, implying that no simple genetic relationship exists between the HV and the Pacific lithosphere. This observation provides strong evidence against generation of HV as melts derived from the Pacific lithosphere, whether this be recent or old (100 Ma). The depleted component present in the HV is unlike any MORB-type mantle and most likely represents material thermally entrained by the upwelling Hawaiian plume and sampled only during the rejuvenated stage. The "Kalihi" component is predominant in the main shield building stage lavas but is also present in the rejuvenated HV. Thus this material is sampled throughout the evolution of the volcano as it moves from the center (main shield-building stage) to the periphery (rejuvenated stage) of the plume. The presence of a plume-derived material in the rejuvenated stage has significant implications for Hawaiian mantle plume melting models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Leg 173 Site 1067 and 1068 amphibolites and metagabbros from the west Iberia margin exhibit variable whole-rock compositions from primitive to more evolved (Mg numbers = 49-71) that are generally incompatible trace and rare earth element enriched (light rare earth element [LREE] = 11-89 x chondrite). The Site 1067 amphibolites are compositionally similar to the basalts reported at Site 899 from this same region, based on trace and rare earth element contents. The Site 1068 amphibolites and metagabbros are similar to the Site 899 diabases but are more LREE enriched. However, the Sites 1067 and 1068 amphibolites and metagabbros are not compositionally similar to the Site 900 metagabbros, which are from the same structural high as the Leg 173 samples. The Leg 173 protoliths may be represented by basalts, diabases, and/or fine-grained gabbros that formed from incompatible trace element-enriched liquids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New petrographic and compositional data were reported for 143 samples of core recovered from Sites 832 and 833 during Ocean Drilling Program (ODP) Leg 134. Site 832 is located in the center and Site 833 is on the eastern edge of the North Aoba Basin, in the central part of the New Hebrides Island Arc. This basin is bounded on the east (Espiritu Santo and Malakula islands) and west (Pentecost and Maewo islands) by uplifted volcano-sedimentary ridges associated with collision of the d'Entrecasteaux Zone west of the arc. The currently active Central Belt volcanic front extends through the center of this basin and includes the shield volcanoes of Aoba, Ambrym, and Santa Maria islands. The oldest rocks recovered by drilling are the lithostratigraphic Unit VII Middle Miocene volcanic breccias in Hole 832B. Lava clasts are basaltic to andesitic, and the dominant phenocryst assemblage is plagioclase + augite + orthopyroxene + olivine. These clasts characteristically contain orthopyroxene, and show a low to medium K calc-alkaline differentiation trend. They are tentatively correlated with poorly documented Miocene calc-alkaline lavas and intrusives on adjacent Espiritu Santo Island, although this correlation demands that the measured K-Ar of 5.66 Ma for one clast is too young, due to alteration and Ar loss. Lava clasts in the Hole 832B Pliocene-Pleistocene sequence are mainly ankaramite or augite-rich basalt and basaltic andesite; two of the most evolved andesites have hornblende phenocrysts. These lavas vary from medium- to high-K compositions and are derived from a spectrum of parental magmas for which their LILE and HFSE contents show a broad inverse correlation with SiO2 contents. We hypothesize that this spectrum results from partial melting of an essentially similar mantle source, with the low-SiO2 high HFSE melts derived by lower degrees of partial melting probably at higher pressures than the high SiO2, low HFSE magmas. This same spectrum of compositions occurs on the adjacent Central Chain volcanoes of Aoba and Santa Maria, although the relatively high-HFSE series is known only from Aoba. Late Pliocene to Pleistocene lava breccias in Hole 833B contain volcanic clasts including ankaramite and augite + olivine + plagioclase-phyric basalt and rare hornblende andesite. These clasts are low-K compositions with flat REE patterns and have geochemical affinities quite different from those recovered from the central part of the basin (Hole 832B). Compositionally very similar lavas occur on Merelava volcano, 80 km north of Site 833, which sits on the edge of the juvenile Northern (Jean Charcot) Trough backarc basin that has been rifting the northern part of the New Hebrides Island Arc since 2-3 Ma. The basal sedimentary rocks in Hole 833B are intruded by a series of Middle Pliocene plagioclase + augite +/- olivine-phyric sills with characteristically high-K evolved basalt to andesite compositions, transitional to shoshonite. These are compositionally correlated with, though ~3 m.y. older than, the high-HFSE series described from Aoba. The calc-alkaline clasts in Unit VII of Hole 832B, correlated with similar lavas of Espiritu Santo Island further west, presumably were erupted before subduction polarity reversal perhaps 6-10 Ma. All other samples are younger than subduction reversal and were generated above the currently subduction slab. The preponderance in the North Aoba Basin and adjacent Central Chain islands of relatively high-K basaltic samples, some with transitional alkaline compositions, may reflect a response to collision of the d'Entrecasteaux Zone with the arc some 2-4 Ma. This may have modified the thermal structure of the subduction zone, driving magma generation processes to deeper levels than are present normally along the reminder of the New Hebrides Island Arc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present new major and trace element and O-Sr-Nd-isotope data for igneous rocks from the western Mediterranean Alborán Sea, collected during the METEOR 51/1 cruise, and for high-grade schists and gneisses from the continental Alborán basement, drilled during the Ocean Drilling Programme (ODP Leg 161, Site 976). The geochemical data allow a detailed examination of crustal and mantle processes involved in the petrogenesis of the lavas and for the first time reveal a zonation of the Miocene Alborán Sea volcanism: (1) a keel-shaped area of LREE-depleted (mainly tholeiitic series) lavas in the central Alborán Sea, generated by high degrees of partial melting of a depleted mantle source and involving hydrous fluids from subducted marine sediments, that is surrounded by (2) a horseshoe-shaped zone with LREE-enriched (mainly calc-alkaline series) lavas subparallel to the arcuate Betic-Gibraltar-Rif mountain belt. We propose that the geochemical zonation of the Miocene Alborán Basin volcanism results from eastward subduction of Tethys oceanic lithosphere coupled with increasing lithospheric thickness between the central Alborán Sea and the continental margins of Iberia and Africa.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We provide new insights into the geochemistry of serpentinites from mid-ocean ridges (Mid-Atlantic Ridge and Hess Deep), passive margins (Iberia Abyssal Plain and Newfoundland) and fore-arcs (Mariana and Guatemala) based on bulk-rock and in situ mineral major and trace element compositional data collected on drill cores from the Deep Sea Drilling Project and Ocean Drilling Program. These data are important for constraining the serpentinite-hosted trace element inventory of subduction zones. Bulk serpentinites show up to several orders of magnitude enrichments in Cl, B, Sr, U, Sb, Pb, Rb, Cs and Li relative to elements of similar compatibility during mantle melting, which correspond to the highest primitive mantle-normalized B/Nb, B/Th, U/Th, Sb/Ce, Sr/Nd and Li/Y among subducted lithologies of the oceanic lithosphere (serpentinites, sediments and altered igneous oceanic crust). Among the elements showing relative enrichment, Cl and B are by far the most abundant with bulk concentrations mostly above 1000 µg/g and 30 µg/g, respectively. All other trace elements showing relative enrichments are generally present in low concentrations (µg/g level), except Sr in carbonate-bearing serpentinites (thousands of µg/g). In situ data indicate that concentrations of Cl, B, Sr, U, Sb, Rb and Cs are, and that of Li can be, increased by serpentinization. These elements are largely hosted in serpentine (lizardite and chrysotile, but not antigorite). Aragonite precipitation leads to significant enrichments in Sr, U and B, whereas calcite is important only as an Sr host. Commonly observed brucite is trace element-poor. The overall enrichment patterns are comparable among serpentinites from mid-ocean ridges, passive margins and fore-arcs, whereas the extents of enrichments are often specific to the geodynamic setting. Variability in relative trace element enrichments within a specific setting (and locality) can be several orders of magnitude. Mid-ocean ridge serpentinites often show pronounced bulk-rock U enrichment in addition to ubiquitous Cl, B and Sr enrichment. They also exhibit positive Eu anomalies on chondrite-normalized rare earth element plots. Passive margin serpentinites tend to have higher overall incompatible trace element contents than mid-ocean ridge and fore-arc serpentinites and show the highest B enrichment among all the studied serpentinites. Fore-arc serpentinites are characterized by low overall trace element contents and show the lowest Cl, but the highest Rb, Cs and Sr enrichments. Based on our data, subducted dehydrating serpentinites are likely to release fluids with high B/Nb, B/Th, U/Th, Sb/Ce and Sr/Nd, rendering them one of the potential sources of some of the characteristic trace element fingerprints of arc magmas (e.g. high B/Nb, high Sr/Nd, high Sb/Ce). However, although serpentinites are a substantial part of global subduction zone chemical cycling, owing to their low overall trace element contents (except for B and Cl) their geochemical imprint on arc magma sources (apart from addition of H2O, B and Cl) can be masked considerably by the trace element signal from subducted crustal components.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During RV Polarstern cruise ANT-XXIII/4 in 2006, a gravity core (PS69/335-2) and a giant box core (PS69/335-1) were retrieved from Maxwell Bay off King George Island (KGI). Comprehensive geochemical (bulk parameters, quantitative XRF, Inductively Coupled Plasma Mass Spectrometry) and radiometric dating analyses (14C, 210Pb) were performed on both cores. A comparison with geochemical data from local bedrock demonstrates a mostly detrital origin for the sediments, but also points to an overprint from changing bioproductivity in the overlying water column in addition to early diagenetic processes. Furthermore, ten tephra layers that were most probably derived from volcanic activity on Deception Island were identified. Variations in the vertical distribution of selected elements in Maxwell Bay sediments further indicate a shift in source rock provenance as a result of changing glacier extents during the past c. 1750 years that may be linked to the Little Ice Age and the Medieval Warm Period. Whereas no evidence for a significant increase in chemical weathering rates was found, 210Pb data revealed that mass accumulation rates in Maxwell Bay have almost tripled since the 1940s (0.66 g cm-2 yr-1 in AD 2006), which is probably linked to rapid glacier retreat in this region due to recent warming.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Eocene-Oligocene metalliferous sediments and associated lithologies from the central equatorial Pacific are described in detail. Geochemical analyses of 54 sediment and 2 basalt samples are presented for 34 elements. Detailed stratigraphic and statistical analyses of these data, combined with mineralogic studies, indicate the presence of volcanic glass and seven main mineral phases: biogenic calcite and opal, Fe smectite, goethite, dMnO2, carbonate fluorapatite, and barite. Fe smectite formed by reactions between Fe oxyhydroxides and biogenic opal, causing the dissolution of calcite and the precipitation of barite. Diagenesis was oxic. Sediments have rare earth element distributions similar to those in seawater. The metal content of the sediments is related to competition between the supply rates of hydrothermal and biogenic particles, but has been enhanced by early diagenetic processes. Eocene-Oligocene metalliferous sediments compare closely to those currently being deposited in the Bauer Basin and on the flanks of the East Pacific Rise. There is, however, no evidence that they were deposited in close proximity to an active hydrothermal system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this monograph on the basis of materials obtained by the author and his colleagues in Arctic expeditions of 1991-2005 and of published data results of studies effect of aerosols on environmental conditions and marine sedimentation in the Arctic are summarizes. Processes of aeolian transport and transformation of sedimentary material from sources to places of its accumulation in bottom sediments are described. Results of this study can be used to assess current state of ecosystem of Arctic seas and as a background for evaluation of possible human impact on nature during exploration of mineral resources of the Arctic shelf. For oceanographers, geochemists, geoecologists.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Arabian Sea off the Pakistan continental margin is characterized by one of the world's largest oxygen minimum zones (OMZ). The lithology and geochemistry of a 5.3 m long gravity core retrieved from the lower boundary of the modern OMZ (956 m water depth) were used to identify late Holocene changes in oceanographic conditions and the vertical extent of the OMZ. While the lower part of the core (535 - 465 cm, 5.04 - 4.45 cal kyr BP, Unit 3) is strongly bioturbated indicating oxic bottom water conditions, the upper part of the core (284 - 0 cm, 2.87 cal kyr BP to present, Unit 1) shows distinct and well-preserved lamination, suggesting anoxic bottom waters. The transitional interval from 465 to 284 cm (4.45 - 2.87 cal kyr BP, Unit 2) contains relicts of lamination which are in part intensely bioturbated. These fluctuations in bioturbation intensity suggest repetitive changes between anoxic and oxic/suboxic bottom-water conditions between 4.45 - 2.87 cal kyr BP. Barium excess (Baex) and total organic carbon (TOC) contents do not explain whether the increased TOC contents found in Unit 1 are the result of better preservation due to low BWO concentrations or if the decreased BWO concentration is a result of increased productivity. Changes in salinity and temperature of the outflowing water from the Red Sea during the Holocene influenced the water column stratification and probably affected the depth of the lower boundary of the OMZ in the northern Arabian Sea. Even if we cannot prove certain scenarios, we propose that the observed downward shift of the lower boundary of the OMZ was also impacted by a weakened Somali Current and a reduced transport of oxygen-rich Indian Central Water into the Arabian Sea, both as a response to decreased summer insolation and the continuous southward shift of the Intertropical Convergence Zone during the late Holocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Authigenic carbonates forming at an active methane-seep on the Makran accretionary prism mainly consist of aragonite in the form of microcrystalline, cryptocrystalline, and botryoidal phases. The d13Ccarbonate values are very negative (-49.0 to -44.0 per mill V-PDB), agreeing with microbial methane as dominant carbon source. The d18Ocarbonate values are exclusively positive (+ 3.0 to + 4.5 per mill V-PDB) and indicate precipitation in equilibrium with seawater at bottom water temperatures. The content of rare earth elements and yttrium (REE + Y) determined by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) and solution ICP-MS varies for each aragonite variety, with early microcrystalline aragonite yielding the highest, cryptocrystalline aragonite intermediate, and later botryoidal aragonite the lowest REE + Y concentrations. Shale-normalised REE + Y patterns of different types of authigenic carbonate reflect distinct pore fluid compositions during precipitation: Microcrystalline aragonite shows high contents of middle rare earth elements (MREE), reflecting REE patterns ascribed to anoxic pore water. Cryptocrystalline aragonite exhibits a seawater-like REE + Y pattern at elevated total REE + Y concentrations, indicating higher concentrations of REEs in pore waters, which were influenced by seawater. Botryoidal aragonite is characterised by seawater-like REE + Y patterns at initial growth stages followed by an increase of light rare earth elements (LREE) with advancing crystal growth, reflecting changing pore fluid composition during precipitation of this cement. Conventional sample preparation involving micro-drilling of carbonate phases and subsequent solution ICP-MS does not allow to recognise such subtle changes in the REE + Y composition of individual carbonate phases. To be able to reconstruct the evolution of pore water composition during early diagenesis, an analytical approach is required that allows to track the changing elemental composition in a paragenetic sequence as well as in individual phases. High-resolution analysis of seep carbonates from the Makran accretionary prism by LA-ICP-MS reveals that pore fluid composition not only evolved in the course of the formation of different phases, but also changed during the precipitation of individual phases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present newly acquired trace element compositions for more than 300 zircon grains in 36 gabbros formed at the slow-spreading Mid-Atlantic and Southwest Indian Ridges. Rare earth element patterns for zircon from modern oceanic crust completely overlap with those for zircon crystallized in continental granitoids. However, plots of U versus Yb and U/Yb versus Hf or Y discriminate zircons crystallized in oceanic crust from continental zircon, and provide a relatively robust method for distinguishing zircons from these environments. Approximately 80% of the modern ocean crust zircons are distinct from the field defined by more than 1700 continental zircons from Archean and Phanerozoic samples. These discrimination diagrams provide a new tool for fingerprinting ocean crust zircons derived from reservoirs like that of modern mid-ocean ridge basalt (MORB) in both modern and ancient detrital zircon populations. Hadean detrital zircons previously reported from the Acasta Gneiss, Canada, and the Narryer Gneiss terrane, Western Australia, plot in the continental granitoid field, supporting hypotheses that at least some Hadean detrital zircons crystallized in continental crust forming magmas and not from a reservoir like modern MORB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The book is devoted to comprehensive study of composition of sediments from the North Pacific Ocean. The sediments have been divided characterized by their lithologic and facial types, grain size composition and mineralogy. Influence of volcanism on formation of mineral and chemical composition of these sediments has been shown. Regularities of distribution of sediment accumulation rates and of a number of chemical elements on the Transpacific profile have been found. Determining role of mechanical fractionation in their localization has been shown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to determine geochemical compositions of Late Cenozoic Arctic seawater, oxide fractions were chemically separated from 15 samples of hand-picked ferromanganese micronodules (50-300 mu m). The success of the chemical separation is indicated by the fact that >97% of the Sr in the oxide fraction is seawater-derived. Rare-earth element (REE) abundances of the Arctic micronodule oxide fractions are much lower than those of bulk Fe-Mn nodules from other ocean basins of the world (e.g., 33 vs. 145 ppm Nd), but the Arctic oxides are enriched in Ce relative to Nd (Ce-N/Nd-N=2.2+/-0.5) and have convex-upward, shale-normalized REE patterns (Nd-N/Gd-N=0.61+/-0.06, Gd-N/Yb-N = 1.5+/-0.2, Nd-N/Yb-N = 0.9+/-0.2), typical of other hydrogenous and diagenetic marine Fe-Mn-oxides. Bulk sediment samples from the central Arctic Ocean have REE abundances and patterns that are characteristic of those of post-Archean shale. Non-detrital fractions (calcite + oxide coatings) of Recent Arctic foraminifera have REE abundances and patterns similar to those of Recent foraminifera from the Atlantic Ocean. Electron microprobe analyses (n=178) of transition elements in 29 Arctic Fe-Mn micronodules from five different stratigraphic intervals of Late Cenozoic sediment indicate that oxide accretion occurred as a result of hydrogenetic and diagenetic processes close to the sediment-seawater interface. Transition element ratios suggest that no oxide accretion occurred during transitions from oxic to suboxic diagenetic conditions. Only K is correlated with Si and Al, and ratios of these elements suggest that they are associated with illite or phillipsite. Ca and Mg are correlated with Mn, which indicates variable substitution of these elements from seawater into the manganate phase. The geochemical characteristics of Arctic Fe-Mn micronodules indicate that the REEs of the oxide fractions were ultimately derived from seawater. However, because of minute contributions of Sr from siliciclastic detritus during diagenesis or during the chemical leaching procedure, Sr isotope compositions of the oxide fractions cannot be used to trace temporal changes in the Sr-87/Sr-86 ratio of Arctic seawater or to improve the chronostratigraphy.