234 resultados para Description and travel
Resumo:
In order to determine the shear parameters of the forearc sedimentary strata drilled during Ocean Drilling Program Leg 186, West Pacific Seismic Network, Japan Trench, eight whole-round samples were selected from different depths in the drilled sections of Sites 1150 and 1151. Whereas Site 1150 lays above the seismically active part of the subduction zone, Site 1151 is situated in an aseismic zone. The aim of the triaxial tests was, apart from determination of the static stress strain behavior of the sediments, to test the hypothesis that the static stress strain parameter could differ for each sites. In order to simulate undrained deformation conditions according to the high clay mineral content of the strata, consolidated undrained shear tests were performed in a triaxial testing setup. Measurements of water content, grain density, organic content, and microtextural investigations under the scanning electron microscope (SEM) accompanied the compression experiments. After the saturation and consolidation stages were completed, failure occurred in the compression stage of the experiments at peak strengths of 280-7278 kPa. The stiffness moduli calculated for each sample from differential stress vs. strain curves show a linear relationship with depth and range between 181 and 5827 kPa. Under the SEM, the artificial fault planes of the tested specimen only show partial alignment of clay minerals because of the high content of microfossils.
Resumo:
One of the objectives of Leg 55 was to investigate the Tertiary history of sedimentation and environment on the Emperor Seamounts after their volcanic activity. For the three first sites, 430, 431, and 432, drilled on Ojin, Nintoku, and Yömei Seamounts, the Neogene sedimentary deposits are not well represented and are not typical pelagic sediments. Except for two holes (430A and 432), where we found calcareous oozes, the sediments are heterogeneous sands, gravels, and pebbly mudstones with a wide range in grain size and composition. Two phenomena characterize these deposits: the inheritance of volcaniclastic material and its alteration, and the authigenesis of secondary minerals including silicates, phosphates, and ferromanganese oxides formed under volcanic influence in a marine environment.
Resumo:
Three nodules from a core taken north of Puerto Rico are composed chiefly of an x-ray amorphous, hydrated, iron-manganese oxide, with secondary goethite, and minor detrital silicates incorporated during growth of the nodules. No primary manganese mineral is apparent. The nodules are enriched in iron and depleted in manganese relative to Atlantic Ocean averages. The formation of these nodules appears to have been contemporary with sedimentation and related to volcanic activity.
Resumo:
Thorium and uranium isotopes were measured in a diagenetic manganese nodule from the Peru basin applying alpha- and thermal ionization mass spectrometry (TIMS). Alpha-counting of 62 samples was carried out with a depth resolution of 0.4 mm to gain a high-resolution Th-230(excess) profile. In addition, 17 samples were measured with TIMS to obtain precise isotope concentrations and isotope ratios. We got values of 0.06-0.59 ppb (Th-230), 0.43-1.40 ppm (Th-232), 0.09-0.49 ppb (U-234) and 1.66-8.24 ppm (U-238). The uranium activity ratio in the uppermost samples (1-6 mm) and in two further sections in the nodule at 12.5+/-1.0 mm and 27.3-33.5 mm comes close to the present ocean wa ter value of 1.144+/-0.004. In two other sections of the nodule, this ratio is significantly higher, probably reflecting incorporation of diagenetic uranium. The upper 25 mm section of the Mn nodule shows a relatively smooth exponential decrease in the Th-230(excess) concentration (TIMS). The slope of the best fit yields a growth rate of 110 mm/Ma up to 24.5 mm depth. The section from 25 to 30.3 mm depth shows constant Th-230(excess) concentrations probably due to growth rates even faster than those in the top section of the nodule. From 33 to 50 mm depth, the growth rate is approximately 60 mm/Ma. Two layers in the nodule with distinct laminations (11-15 and 28-33 mm depth) probably formed during the transition from isotopic stage 8 to 7 and in stage 5e, respectively. The Mn/Fe ratio shows higher values during interglacials 5 and 7, and lower ones during glacials 4 and 6. A comparison of our data with data from adjacent sediment cores suggests (a) a variable sb supply of hydrothermal Mn to sediments and Mn nodules of the Peru basin or (b) suboxic conditions at the water sediment interface during periods with lower Mn/Fe ratios.