969 resultados para Age, error
Resumo:
Constraining the history of seawater (234U/238U) is important because this ratio is used to assess the validity of U/Th ages, and because it provides information about the past rate of physical weathering on the continents. This study makes use of U-rich slope sediments from the Bahamas in an attempt to reconstruct seawater (234U/238U) for the last 800 kyr. For the last 360 kyr, U/Th dating of these sediments provides ages and initial (234U/238U) values. Sixty-seven samples, largely from marine highstands, have initial (234U/238U) which scatter somewhat about the modern seawater value (~1.145) but neither this scatter nor the average value increases with age of sample. These data contrast with published coral data and suggest that seawater (234U/238U) has remained within 15? of the modern value for the last 360 kyr. This confirms the rejection of coral U/Th ages where the initial (234U/238U) is significantly different from modern seawater. Data from older highstands, dated with delta18O stratigraphy or by the presence of the Brunhes/Matuyama (B/M) reversal at 780 kyr, allow seawater (234U/238U) to be assessed prior to the range of the 230Th chronometer. Unfortunately, diagenetic scatter in the data between the B/M reversal and 360 kyr is rather large, probably relating to low U concentrations for these samples. But there is no indication of a trend in seawater (234U/238U) with age. High U samples from close to the B/M reversal show less diagenetic scatter and an initial (234U/238U) that averages 1.102. This lower value can be explained by lower seawater (234U/238U) at the time of the B/M reversal, or by progressive loss of 234U from the sediment by alpha-recoil. A simple box model is presented to illustrate the response of seawater (234U/238U) to variations in riverine input, such as might be caused by changes in continental weathering. Comparison of the Bahamas (234U/238U) data with model results indicates that riverine (234U/238U) has not varied by more than 65? for any 100 kyr period during the last 360 kyr. It also indicates that the ratio of physical to chemical weathering on the continents has not been higher than at present for any extended period during the last 800 kyr.
Resumo:
An integrated framework of magnetostratigraphy, calcareous microfossil bio-events, cyclostratigraphy and d13C stratigraphy is established for the upper Campanian-Maastrichtian of ODP Hole 762C (Exmouth Plateau, Northwestern Australian margin). Bulk-carbonate d13C events and nannofossil bio-events have been recorded and plotted against magnetostratigraphy, and provided absolute ages using the results of the cyclostratigraphic study and the recent astronomical calibration of the Maastrichtian. Thirteen carbon-isotope events and 40 nannofossil bio-events are recognized and calibrated with cyclostratigraphy, as well as 14 previously published foraminifer events, thus constituting a solid basis for large-scale correlations. Results show that this site is characterized by a nearly continuous sedimentation from the upper Campanian to the K-Pg boundary, except for a 500 kyr gap in magnetochron C31n. Correlation of the age-calibrated d13C profile of ODP Hole 762C to the d13C profile of the Tercis les Bains section, Global Stratotype Section and Point of the Campanian-Maastrichtian boundary (CMB), allowed a precise recognition and dating of this stage boundary at 72.15 ± 0.05 Ma. This accounts for a total duration of 6.15 ± 0.05 Ma for the Maastrichtian stage. Correlation of the boundary level with northwest Germany shows that the CMB as defined at the GSSP is ~800 kyr younger than the CMB as defined by Belemnite zonation in the Boreal realm. ODP Hole 762C is the first section to bear at the same time an excellent recovery of sediments throughout the upper Campanian-Maastrichtian, a precise and well-defined magnetostratigraphy, a high-resolution record of carbon isotope events and calcareous plankton biostratigraphy, and a cyclostratigraphic study tied to the La2010a astronomical solution. This section is thus proposed as an excellent reference for the upper Campanian-Maastrichtian in the Indian Ocean.
Resumo:
We here present a synchronization of the NGRIP, GRIP, and GISP2 ice cores based mainly on volcanic events over the period 14.9-32.45 ka b2k (before AD 2000), corresponding to Marine Isotope Stage 2 (MIS 2) and the end of MIS 3. The matching provides a basis for applying the recent NGRIP-based Greenland Ice Core Chronology 2005 (GICC05) time scale to the GRIP and GISP2 ice cores, thereby making it possible to compare the synchronized palaeoclimate profiles of the cores in detail and to identify relative accumulation differences between the cores. Based on the matching, a period of anomalous high accumulation rates in the GISP2 ice core is detected within the period 16.5-18.3 ka b2k. The d18O and [Ca2+] profiles of the three cores are presented on the common GICC05 time scale and generally show excellent agreement across the stadial-interstadial transitions and across the two characteristic dust events in Greenland Stadial 3. However, large differences between the d18O and [Ca2+] profiles of the three cores are seen in the same period as the 7-9% increase in the GISP2 accumulation rate. We conclude that changes of the atmospheric circulation are likely to have occurred in this period, altering the spatial gradients in Greenland and resulting in larger variations between the records.
Resumo:
The Wilkes and Aurora basins are large, low-lying sub-glacial basins that may cause areas of weakness in the overlying East Antarctic ice sheet. Previous work based on ice-rafted debris (IRD) provenance analyses found evidence for massive iceberg discharges from these areas during the late Miocene and Pliocene. Here we characterize the sediments shed from the inferred areas of weakness along this margin (94°E to 165°E) by measuring40Ar/39Ar ages of 292 individual detrital hornblende grains from eight marine sediment core locations off East Antarctica and Nd isotopic compositions of the bulk fine fraction from the same sediments. We further expand the toolbox for Antarctic IRD provenance analyses by exploring the application of 40Ar/39Ar ages of detrital biotites; biotite as an IRD tracer eliminates lithological biases imposed by only analyzing hornblendes and allows for characterization of samples with low IRD concentrations. Our data quadruples the number of detrital 40Ar/39Ar ages from this margin of East Antarctica and leads to the following conclusions: (1) Four main sectors between the Ross Sea and Prydz Bay, separated by ice drainage divides, are distinguishable based upon the combination of 40Ar/39Ar ages of detrital hornblende and biotite grains and the e-Nd of the bulk fine fraction; (2) 40Ar/39Ar biotite ages can be used as a robust provenance tracer for this part of East Antarctica; and (3) sediments shed from the coastal areas of the Aurora and Wilkes sub-glacial basins can be clearly distinguished from one another based upon their isotopic fingerprints.
Resumo:
North Atlantic sediment records (MD95-2042), Greenland (Greenland Ice Core Project (GRIP)) and Antarctica (Byrd and Vostok) ice core climate records have been synchronized over marine isotopic stage 3 (MIS 3) (64 to 24 kyr B.P.) (Shackleton et al., 2000). The resulting common timescale suggested that MD95-2042 d18Obenthic fluctuations were synchronous with temperature changes in Antarctica (dDice or d18Oice records). In order to assess the persistency of this result we have used here the recent Greenland NorthGRIP ice core covering the last glacial inception. We transfer the Antarctic Vostok GT4 timescale to NorthGRIP d18Oice and MD95-2042 d18Oplanktonic records and precisely quantify all the relative timing uncertainties. During the rapid warming of Dansgaard-Oeschger 24, MD95-2042 d18Obenthic decrease is in phase with d18Oplanktonic decrease and therefore with NorthGRIP temperature increase, but it takes place 1700 ± 1100 years after the Antarctic warming. Thus the present study reveals that the results obtained previously for MIS 3 cannot be generalized and demonstrates the need to improve common chronologies for marine and polar archives.
Resumo:
An extensive, high-resolution, sedimentological-geochemical survey was done using geo-acoustics, XRF-core scans, ICP-AES, AMS 14C-dating and grain size analyses of sediments in 11 cores from the Gulf of Taranto, the southern Adriatic Sea, and the central Ionian Sea spanning the last 16 cal. ka BP. Comparable results were obtained for cores from the Gallipoli Shelf (eastern Gulf of Taranto), and the southern Adriatic Sea suggesting that the dominant provenance of Gallipoli Shelf sediments is from the western Adriatic mud belt. The 210Pb and 14C-dated high-accumulation-rate sediments permit a detailed reconstruction of climate variability over the last 16 cal. ka BP. Although, the Glacial-Interglacial transition is generally dry and stable these conditions are interrupted by two phases of increased detrital input during the Bølling-Allerød and the late Younger Dryas. The event during the Younger Dryas period is characterized by increased sediment inputs from southern Italian sources. This suggests that run-off was higher in southern- compared to northern Italy. At approximately ~ 7 cal. ka BP, increased detrital input from the Adriatic mud belt, related to sea level rise and the onset of deep water formation in the Adriatic Sea, is observed and is coincident with the end of sapropel S1 formation in the southern Adriatic Sea. During the mid-to-late Holocene we observed millennial-scale events of increased detrital input, e.g. during the Roman Humid Period, and of decreased detrital input, e.g., Medieval Warm Period. These dry/wet spells are consistent with variability in the North Atlantic Oscillation (NAO). A negative state of the NAO and thus a more advanced penetration of the westerlies into the central Mediterranean, that result in wet conditions in the research area concord with events of high detrital input e.g., during the Roman Humid Period. In contrast, a positive state of the NAO, resulting in dry conditions in the Mediterranean, dominated during events of rapid climate change such as the Medieval Warm Period and the Bronze Age.
Resumo:
Water isotope records from the EPICA Dronning Maud Land (EDML) and the NorthGRIP ice cores have revealed a one to one coupling between Antarctic Isotope Maxima (AIM) and Greenland Dansgaard-Oeschger (DO) events back to 50 kyr. In order to explore if this north-south coupling is persistent over Marine Isotopic Stage 5 (MIS 5), a common timescale must first be constructed. Here, we present new records of d18O of O2 (d18Oatm) and methane (CH4) measured in the air trapped in ice from the EDML (68-147 kyr) and NorthGRIP (70-123 kyr) ice cores. We demonstrate that, through the period of interest, CH4 records alone are not sufficient to construct a common gas timescale between the two cores. Millennial-scale variations of d18Oatm are evidenced over MIS 5 both on the Antarctic and Greenland ice cores and are coupled to CH4 profiles to synchronise the NorthGRIP and EDML records. They are shown to be a precious tool for ice core synchronisation. With this new dating strategy, we produce the first continuous and accurate sequence of the north-south climatic dynamics on a common ice timescale for the last glacial inception and the first DO events of MIS 5, reducing relative dating uncertainties to an accuracy of a few centuries at the onset of DO events 24 to 20. This EDML-NorthGRIP synchronisation provides new firm evidence that the bipolar seesaw is a pervasive pattern from the beginning of the glacial period. The relationship between Antarctic warming amplitudes and their concurrent Greenland stadial duration highlights the particularity of DO event 21 and its Antarctic counterpart. Our results suggest a smaller Southern Ocean warming rate for this long DO event compared to DO events of MIS 3.
Resumo:
The paper is devoted to a marine geophysical-geological research in the West Antarctic. This researche contributed to establishing the base geodesic network of the West Antarctic and supplemented geokinematic monitoring based on this network with geophysical and geologic information on structure and features of geomorphological and tectonic development of the South Ocean floor. Collected materials allow to conclude about the inhomogeneity of the Scotia Sea floor and about combination of fragments of a continental massif with young rift structures in conditions of the upwelling mantle. The ancient continental bridge, faunal connections between the South America and the West Antarctic has been destroyed by processes of destruction, taphrogeny and sea floor spreading. Structures of the Scotia and Caribbean Seas, North Fiji and Arctic Basins are similar.
Resumo:
Phanerozoic granitoids are widespread in the Korean Peninsula and form a part of the East Asian Cordilleran-type granitoid belt extending from southeastern China to Far East Russia. Here we present SHRIMP zircon U-Pb ages and geochemical and Nd isotopic compositions of Late Paleozoic to Early Jurassic granitoid plutons in the northern Gyeongsang basin, southeastern Korea; namely the Jangsari, Yeongdeok, Yeonghae, and Satkatbong plutons. The granite and associated gabbroic rocks from the Jangsari pluton were coeval and respectively dated at 257.3 ± 2.0 Ma and 255.7 ± 1.4 Ma. This result represents the first finding of a Late Paleozoic pluton in South Korea. Three granite samples from the Yeongdeok pluton yielded a slightly younger age span ranging from 252.9 ± 2.5 Ma to 246.7 ± 2.1 Ma. Two diorite samples from the Yeonghae pluton gave much younger ages of 195.1 ± 1.9 Ma and 196.3 ± 1.6 Ma. An Early Jurassic age of 192.4 ± 1.6 Ma was also obtained from a diorite sample from the Satkatbong pluton. The mineral assemblage and Al2O3/(Na2O + K2O) versus Al2O3/(CaO + Na2O + K2O) relationship indicate that all the analyzed plutons are subduction zone granitoids. Enrichments in large-ion-lithophile-elements and depletions in high-field-strength-elements of these plutons are also concordant with geochemical characteristics typical for the subduction zone magma. The presence of Late Permian to Early Triassic arc system is in contrast with the conventional idea that the arc magmatism along the continental margin of the Korean Peninsula has commenced from Early Jurassic after the termination of Triassic collisional orogenesis. The epsilon-Nd(t) values of the granitoid plutons are consistently positive (2.4-4.6), suggesting that crustal residence time of the basement beneath the Gyeongsang basin is relatively short. Moreover, the reevaluation of previously-published data reveals that geochemical compositions of the Yeongdeok pluton are compatible with those of high-silica adakites; La/Yb = 37.5-114.6, Sr/Y = 138.2-214.0, SiO2 = 62.9-72.0 wt. %, Al2O3 = 15.5-17.0 wt. %, Sr = 562-1173 ppm, MgO = 0.4-1.6 wt. %, Y = 3-6 ppm, Yb = 0.18-0.45 ppm, and Eu/Eu* = 0.92-1.31. The occurrence of adakites in southeastern Korea, and presumably in the Hida belt of central-western Japan, is indicative of a hot subduction regime developing at least partly along the East Asian continental margin during the Permian-Triassic transition period.