264 resultados para Vc


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dataset contains the results of granulometric and bulk geochemical analyses of Van Veen surface samples obtained by the Alfred Wegener Institute (AWI) in the course of the 2012 and 2013 summer field seasons. The sampling was performed along transects in depths generally <13 m, to a distance of about <5 km off Herschel Island. In 2012, 75 samples in Pauline Cove and in the vicinity of Simpson Point were obtained. Sample collection was expanded in 2013, on transects established the previous year, with additional locations in Tetris Bay and Workboat Passage. Samples consisted of approximately 100 g of the top 3-6 cm of sediment, and were frozen in the field and freeze dried at the AWI before undergoing analytical procedures. Sample locations were recorded with the onboard global positioning system (GPS) unit. Grain size distributions in our study were obtained using laser diffractometry at the AWI (Beckman Coulter LS200) on the <1 mm fraction of samples oxidized with 30% H2O2 until effervescence ceased to remove organics. Some samples were also sieved using a sieve stack with 1 phi intervals. GRADISTAT (Blott and Pye, 2001) was used to calculate graphical grain size statistics (Folk and Ward, 1957). Grain diameters were logarithmically transformed to phi values, calculated as phi=-log2d, where d is the grain diameter in millimeters (Blott and Pye, 2001; Krumbein, 1934). Freeze dried samples were ground and ground using an Elemetar Vario EL III carbon-nitrogen-sulphur analyzer at the AWI to measure total carbon (TC) and total nitrogen (TN). Tungsten oxide was added to the samples as a catalyst to the pyrolysis. Following this analysis, total organic carbon (TOC) was determined using an Elementar VarioMax. Stable carbon isotope ratios of 13C/12C of 118 samples were determined on a DELTAplusXL mass spectrometer (ThermoFisher Scientific, Bremen) at the German Research Centre for Geosciences (GFZ) in Potsdam, Germany . An additional analysis on 69 samples was carried out at the University of Hamburg with an isotope ratio mass spectrometer (Delta V, Thermo Scientific, Germany) coupled to an elemental analyzer (Flash 2000, Thermo Scientific, Germany). Prior to analysis, soil samples were treated with phosphoric acid (43%) to release inorganic carbon. Values are expressed relative to Vienna Peedee belemnite (VPDB) using external standards (USGS40, -26.4 per mil VPDB and IVA soil 33802153, -27.5 per mil VPDB).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of the mean oceanic oxygen concentration results from a balance between ventilation and consumption. In the eastern tropical Pacific and Atlantic, this balance creates extended oxygen minimum zones (OMZ) at intermediate depth. Here, we analyze hydrographic and velocity data from shipboard and moored observations, which were taken along the 23°W meridian cutting through the Tropical North East Atlantic (TNEA) OMZ, to study the distribution and generation of oxygen variability. By applying the extended Osborn-Cox model, the respective role of mesoscale stirring and diapycnal mixing in producing enhanced oxygen variability, found at the southern and upper boundary of the OMZ, is quantified. From the well-ventilated equatorial region toward the OMZ core a northward eddy-driven oxygen flux is observed whose divergence corresponds to an oxygen supply of about 2.4 µmol kg-1 year-1 at the OMZ core depth. Above the OMZ core, mesoscale eddies act to redistribute low- and high-oxygen waters associated with westward and eastward currents, respectively. Here, absolute values of the local oxygen supply >10 mmol kg-1 year-1 are found, likely balanced by mean zonal advection. Combining our results with recent studies, a refined oxygen budget for the TNEA OMZ is derived. Eddy-driven meridional oxygen supply contributes more than 50 % of the supply required to balance the estimated oxygen consumption. The oxygen tendency in the OMZ, as given by the multidecadal oxygen decline, is maximum slightly above the OMZ core and represents a substantial imbalance of the oxygen budget reaching about 20 % of the magnitude of the eddy-driven oxygen supply.