222 resultados para Turbidites


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of the palynofacies and miospore thermal alteration indices (TAI) of sediments from ODP Site 808 in the Nankai Trough was undertaken to determine (1) the source, depositional environment, and diagenesis of organic matter in the accreted sediments, and (2) the thermal structure and history of the prism and its relationship to fluid flow. Using the Hartax classification system, two palynofacies were recognized in the sedimentary sequence. Facies 1 occurs within the upper 600 m of trench-wedge turbidites (sedimentation rate > 1 km/m.y.) and contains >50% inertite particles. The rest of the assemblage is dominated by well-preserved phytoclasts and contains small amounts of poorly preserved phytoclasts and well-preserved scleratoclasts. Facies 2 occurs within the Shikoku Basin hemipelagites (600-1300 m below seafloor; sedimentation rate <150 m/m.y.) and contains over two-thirds inertite particles. The rest of the assemblage is dominated by poorly preserved phytoclasts. Miospores and marine phytoplankton compose only a small percentage of both palynofacies. Degraded organic matter is most noticeable in Facies 2, whereas its presence in Facies 1 is overshadowed by the high influx of well-preserved primary organic matter. Most of the degraded organic matter and inertite is interpreted to be reworked. Some of the degraded organic matter may be primary, and may have experienced more biodegradation and thermal alteration in Facies 2 than in Facies 1. TAI values indicate an immature stage of organic maturation (< 2) down to about 900 mbsf. Below this, samples show an increase with depth to a mature stage, reaching peak levels of about 3 just above basement. Samples from within the thrust fault and decollement zones do not show levels of maturity significantly greater than those of surrounding samples, leaving uncertain whether hot fluids have migrated along these fault boundaries in the past.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fifty-seven white mica clasts were separated from five samples taken from near the bases of turbidites ranging in age from early Albian to middle Eocene. Twenty two (39%) of the micas have ages between 260 and 340 Ma and five (9%) have older ages (~400-600 Ma). The former age range is characteristic of the North American Alleghenian orogeny and the Iberian Variscan orogeny. The latter range is characteristic of the North American Acadian orogeny and older basement rocks in the Grand Banks and Newfoundland areas. Both age ranges are present in the middle Eocene sample, but only the younger range occurs in the middle Albian sample. This difference could be a sampling artifact. If this is not the case, then the most likely explanation is that the Acadian-aged micas within the Meguma Zone underlying the Grand Banks were totally reset by Alleghenian reactivation of the zone, a feature which occurs extensively in Nova Scotia. The addition of Acadian-aged micas in the middle Eocene sample may reflect a change in sediment provenance as drainage systems unrelated to rift topography developed. With the exception of one clast dated at 186 Ma, the 12 other micas obtained from the upper Paleocene sample yielded ages between 55 and 74 Ma, with 7 falling within ±2 m.y. of the 57-Ma age of the sample indicated by the biostratigraphic age-depth plot for Site 1276. This, together with the volcaniclastic content of the sample, indicates an input from near-contemporaneous volcanism. The nearest known occurrences of near-contemporaneous late Paleocene volcanism that could have produced white micas are in Greenland and Portugal, some 2000 and 1500 km distant, respectively, from Site 1276 during the Paleocene. However, ages of volcanism in these areas indicate that they could probably not be sources of micas younger than 60 m.y., which suggests some as-yet unknown volcanic source in the North Atlantic area. Accumulation in the Grand Banks area of airborne-transported volcaniclastic material from eruptions of slightly different ages, followed by a single resedimentation event, could account for the spread of dates obtained from the sample. White micas from the lowermost Albian sample show a spread of ages between 37 and 284 Ma that is completely different from the age distribution pattern of the middle Albian and middle Eocene samples. The sample location is between, and at least 25 m above and below, two igneous sills dated at 98 and 105 Ma. The sills have narrow thermal aureoles and ages older than the youngest detrital micas in the sample. It is unlikely, therefore, that the spread of mica ages in the sample is due to partial resetting of ages caused by thermal effects associated with the intrusion of the sills. The resetting may have been associated with a longer lived thermal event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CHN analyses of sediments and rocks sampled during DSDP Leg 75 in the South Atlantic have provided concentrations of organic carbon and atomic C/N ratios of organic matter from two sites. High values of organic carbon were measured in sediments deposited during Neogene and Cretaceous times at Site 530 in the Angola Basin; sediments deposited at other times contain less than 0.5% organic carbon. Development of the Benguela Current and associated upwelling-supported biological productivity is recorded in late Miocene to Holocene sediments which contain 1 to 7% organic carbon. These sediments include debris flows and turbidites composed of predominantly biogenic materials originally deposited on the Walvis Ridge and on the African continental margin. Organic-carbon-rich black shales containing up to 17% organic carbon occur in late Albian to Coniacian turbidite sequences. These Cretaceous black shale layers are commonly several centimeters thick and are separated by bioturbated fine-grained organic-carbon-poor turbidites which are usually much thicker. At Site 532 on the Walvis Ridge, biogenic sediments deposited between late Miocene and Holocene times contain 1 to 9% organic carbon. Fluctuations in the intensity of high biological productivity associated with the Benguela Current are preserved in alternating light and dark layers of sediments. C/N ratios of organic matter in sediments from both sites are typical of marine sources

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ultimate composition of any sandstone is affected by a host of primary and secondary factors, including the lithologies present in source terranes, climate, depositional environment and diagenesis. In the case of a subduction complex, however, unequivocal identification of detrital provenance may be impossible because of the cumulative effects of tectonic and sedimentary transport. Long-distance sedimentary transport (> 1000 km) is common within trenches, and abyssal-plain turbidites can be tectonically transported for long distances as the underlying oceanic basement drifts towards a subduction front. Post-accretionary displacement can occur as a consequence of strike-slip faulting, and the total distance of tectonic dislocation may reach several thousand kilometers. The present-day Aleutian forearc region (North Pacific Ocean) illustrates many of the "problems" which typify subduction zones. Several petrologic suites can be identified, and there are significant variations in detrital modes in both time and space. The Aleutian region serves as a sobering modern analog for accreted rock units such as the Franciscan Complex of California, where intercalations of discrete sandstone suites have been noted. In the absence of paleomagnetic control, interpretations of sediment provenance within ancient subduction complexes probably should be restricted to the generic level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Only Site 802 has recorded appreciable Cenozoic carbonate sediments during Ocean Drilling Program Leg 129 in the central Mariana Basin of the western Pacific Ocean. Calcareous nannofossils provide the best biostratigraphic information for the 360-m Tertiary section, which consists primarily of volcaniclastic turbidites interbedded with calcareous claystone and chalk. Many samples contain significant amounts of nannofossils reworked from older sediments. An unconformity appears to be present between Cores 129-802A-32R and -33R, with upper Oligocene-lower Miocene sediments above and lower Eocene-upper Paleocene sediments below the unconformity. The sediments below the unconformity contain abundant reworked Cretaceous nannofossils. Only one sample from Site 801 yielded nannofossils, and those consist of a mixture of Campanian-Maastrichtian and Paleogene forms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents new major and trace-element data and Lu-Hf and Sm-Nd isotopic compositions for representative suites of marine sediment samples from 14 drill sites outboard of the world's major subduction zones. These suites and samples were chosen to represent the global range in lithology, Lu/Hf ratios, and sediment flux in subducting sediments worldwide. The data reported here represent the most comprehensive data set on subducting sediments and define the Hf-Nd isotopic variations that occur in oceanic sediments and constrain the processes that caused them. Using new marine sediment data presented here, in conjunction with published data, we derive a new Terrestrial Array given by the equation, epsilon-Hf = 1.55 * epsiolon-Nd + 1.21. This array was calculated using >3400 present-day Hf and Nd isotope values. The steeper slope and smaller y-intercept of this array, compared to the original expression (epsilon-Hf = 1.36 * epsilonNd + 2.89; Vervoort et al., 1999, doi:10.1016/S0012-821X(99)00047-3) reflects the use of present day values and the unradiogenic Hf of old continental samples included in the array. In order to examine the Hf-Nd isotopic variations in marine sediments, we have classified our samples into 5 groups based on lithology and major and trace-element geochemical compositions: turbidites, terrigenous clays, and volcaniclastic, hydrothermal and hydrogenetic sediments. Compositions along the Terrestrial Array are largely controlled by terrigenous material derived from the continents and delivered to the ocean basins via turbidites, volcaniclastic sediments, and volcanic inputs from magmatic arcs. Compositions below the Terrestrial Array derive from unradiogenic Hf in zircon-rich turbidites. The anomalous compositions above the Terrestrial Array largely reflect the decoupled behavior of Hf and Nd during continental weathering and delivery to the ocean. Both terrigenous and hydrogenetic clays possess anomalously radiogenic Hf, reflecting terrestrial sedimentary and weathering processes on the one hand and marine inheritance on the other. This probably occurs during complementary processes involving preferential retention of unradiogenic Hf on the continents in the form of zircon and release of radiogenic Hf from the breakdown of easily weathered, high Lu-Hf phases such as apatite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Upper Berriasian to lower Aptian calcareous nannofossil assemblages have been studied from a siliciclastic deep-sea fan complex and a subjacent limestone sequence drilled beneath the lower continental rise in the western North American Basin, 270 miles (435 km) off Cape Hatteras, North Carolina (USA). Sharp lithologic facies changes and reworking by turbidites complicate the biostratigraphic interpretation, but provide an excellent opportunity to better distinguish "nearshore" from open-ocean nannofossil species, and to investigate the introduction of neritic taxa into the deep-see environment, a phenomenon that appears to have been widespread within the circum-North Atlantic during Neocomian times. Well-preserved assemblages in dark, carbonaceous claystones were probably displaced from the oxygen minimum zone along the upper slope or outer shelf. Neritic, continental margin species prevalent in this facies include the holococcolith Zebrashapka vanhintei n. gen., n. sp., Lithraphidites alatus magnus n. spp., Pickelhaube furtiva n. gen., and a host of nannoconids and micrantholiths. A qualitative evaluation of widely used guide fossils suggests that the triad of proposed markers for the base of Roth's Zone NC3 make their first appearances in the following (ascending) order: Diadorhombus rectus, TUbodiscus verenae, Calcicalathina oblongata. Of these, we chose the nominative species for the zone, T. verenae, to mark its base and to approximate the Berriasian/Valangian boundary. Cyclagelosphaera deflandrei is strongly affected by diagenesis and is therefore not a reliable index species for the base of Zone NC4 near the Valanginian/Hauterivian boundary (the last occurrence of T. verenae is also not suitable there). In addition, Lithraphidites bollii, a form apparently confined to the low latitudes of the Tethyan region, was absent at the more temperate Site 603 and not available as a subzonal marker for the upper Hautervian-lower Barremian (mid-NC4 and mid-NC5, respectively). Cruciellipsis cuvillieri, however, provides a reliable datum just below the Hauterivian/Barremian boundary (base of NC5), despite the potential for reworking in this section. Nannoconids tend to be reworked in this section, and do not provide trustworthy forms to mark the Barremian/Aptian boundary (base of NC6). Hayesites irregularis n. comb, probably does provide a useful first appearance datum within the lower Aptian, if it is not confused with a more birefringent and globular form, Rucinolithus terebrodentarius n. sp. Rhagodiscus angustus is mimicked by a similar form (Zeughrabdotusl pseudoangustus n. sp.), which apparently ranges down to the Hauterivian, thus Lithastrinus floralis provides a more useful first appearance datum for the base of the middle-upper Aptian Rhagodiscus angustus Zone (NC7). Aside from the new taxa mentioned above, the following are also described: Cretarhabdusl delicatus n. sp. and Cyclagelosphaera jiangii n. sp.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bentonites (i.e., smectite-dominated, altered volcanic ash layers) were recovered in Berriasian to Valanginian hemipelagic sediments of the Wombat Plateau (Site 761) and southern Exmouth Plateau (Site 763). They are compared to coeval bentonites in eupelagic sediments of the adjacent Argo Abyssal Plain (Sites 261 and 765) and Gascoyne Abyssal Plain (Site 766). A volcaniclastic origin with dacitic to rhyolitic ash as parent material is suggested by the abundance of well-ordered montmorillonite, fresh to altered silicic glass shards, volcanogenic minerals (euhedral sanidine, apatite, and long-prismatic zircon), and volcanic rock fragments, and by a vitroclastic ultrafabric (smectitized glass shards). We distinguish (1) pure smectite bentonites with a white, pink, or light gray color, a waxy appearance, and a very homogeneous, cryptocrystalline smectite matrix (water-free composition at Site 761: 68.5% SiO2, 0.27% TiO2, 19.1% Al2O3, 3.3% Fe2O3, 0.4%-1.1% Na2O, and 0.6% K2O) and (2) impure bentonitic claystones containing mixtures of volcanogenic smectite and pyroclastic grains with terrigenous and pelagic components. The ash layers were progressively altered during diagenesis. Silicic glass was first hydrated, then slightly altered (etched with incipient smectite authigenesis), then moderately smectitized (with shard shape still intact), and finally completely homogenized to a pure smectite matrix without obvious relict structures. Euhedral clinoptilolite is the latest pore-filling or glass-replacing mineral, postdating smectite authigenesis. Volcanic activity was associated with continental breakup and rapid subsidence during the "juvenile ocean phase." Potential source areas for a Neocomian post-breakup volcanism include the Wombat Plateau, Joey and Roo rises, Scott Plateau, and Wallaby Plateau/Cape Range Fracture Zone. Westward-directed trade winds transported silicic ash from these volcanic source areas to the Exmouth Plateau into the adjacent abyssal plains. The Wombat Plateau bentonites are interpreted as proximal ash turbidites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Volcanic ash layers (1-3 cm thick) are abundant in the North Aoba Basin drill sites but less common at forearc sites. Ash deposited on the forearc slopes is liable to be redistributed as turbidites. In addition, the westerly upper winds also minimize ash-fall on the western (forearc) side of the New Hebrides Island Arc. Crystalline components in the ashes are primarily plagioclase (An90-An44), clinopyroxene (Ca46Mg49Fe5-Ca43Mg33Fe24), olivine (Fo87-Fo62), and titanomagnetite. There are also small amounts of orthopyroxene, magnetite, apatite, and quartz. Glass shards occur in most of the ashes and range in composition from basalt to rhyolite. There is often a variety of glass compositions within a single ash layer. One explanation for this is that the rate of accumulation of ash from several different eruptions or eruptive phases exceeded the background sedimentation rate: there may also have been a certain amount of reworking. The high-K and low-K trends previously recognized in volcanic rocks from the New Hebrides Island Arc are clearly represented in the Leg 134 glasses. All of the ashes investigated here are thought to have originated from the Central Chain volcanoes. The source of the high-K group was probably the Central Basin volcanoes of Santa Maria, Aoba, and Ambrym. The lower-K series includes a distinctive group of dacites and is likely to have originated from the Epi-Tongoa-Tongariki sector of the arc where major pyroclastic eruptions, associated with caldera collapse, have occurred during the Holocene, perhaps as recently as 400 yr ago.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reworked shallow-water larger and deep-water calcareous benthic foraminifers were recovered from foraminiferal packstones and nannofossil chalks in Hole 802A. The autochthonous zeolitic pelagic claystone is characterized by late Campanian abyssal agglutinated foraminifers that allow correlation with the North Atlantic and the adjacent Pigafetta Basin. Assemblages of DendrophryalRhizammina in graded beds within the zeolitic claystone indicate reworking through entrainment in the flocculent E layer of turbidites, rather than recolonization following a biosiliceous event. Background sedimentation of the claystone took place below the carbonate compensation depth. The nannofossil chalk contains reworked lower bathyal to abyssal calcareous foraminifers of late Paleocene to early Miocene age. The topmost bed of the nannofossil chalk unit commences with an algal foraminiferal packstone containing Lepidocyclina sumatrensis, Heterostegina borneensis, Amphistegina hauerina, Asterigerina marshallana, and A. tentoria, which indicate that the source area was a shallow-water reef and allow the bed to be dated as early Miocene. The absence of obviously younger planktonic microfossils in the graded bed indicates that the resedimentation event was generally contemporaneous with original deposition and took place during an early Miocene global sea-level highstand. An early Miocene shallow-water assemblage is also seen in the graded beds at the base of a volcaniclastic turbidite sequence overlying the nannofossil chalks. Resedimentation of this unit was associated with volcanic activity some distance away.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-resolution benthic oxygen isotope and dust flux records from Ocean Drilling Program site 659 have been analyzed to extend the astronomically calibrated isotope timescale for the Atlantic from 2.85 Ma back to 5 Ma. Spectral analysis of the delta18O record indicates that the 41-kyr period of Earth's orbital obliquity dominates the Pliocene record. This is shown to be true regardless of fundamental changes in the Earth's climate during the Pliocene. However, the cycles of Sahelian aridity fluctuations indicate a shift in spectral character near 3 Ma. From the early Pliocene to 3 Ma, the periodicities were dominantly precessional (19 and 23 kyr) and remained strong until 1.5 Ma. Subsequent to 3 Ma, the variance at the obliquity period (41 kyr) increased. The timescale tuned to precession suggests that the Pliocene was longer than previously estimated by more than 0.5 m.y. The tuned ages for the magnetic boundaries Gauss/Gilbert and Top Cochiti are about 6-8% older than the ages of the conventional timescale. A major phase of Pliocene northern hemisphere ice growth occurred between 3.15 Ma and 2.5 Ma. This was marked by a gradual increase in glacial Atlantic delta18O values of 1per mil and an increase in amplitude variations by up to 1.5 per mil, much larger than in the Pacific deepwater record (site 846). The first maxima occured in cold stages G6-96 between 2.7 Ma and 2.45 Ma. Prior to 3 Ma, the isotope record is characterized by predominantly low amplitude fluctuations (< 0.7 per mil). When obliquity forcing was at its minimum between 4.15 and 3.6 Ma and during the Kaena interval, delta18O amplitude fluctuations were minimal. From 4.9 to 4.3 Ma, the delta18O values decreased by about 0.5 per mil, reaching a long-term minimum at 4.15 Ma, suggesting higher deepwater temperatures or a deglaciation. Deepwater cooling and/or an increase in ice volume is indicated by a series of short-term delta18O fluctuations between 3.8 and 3.6 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nineteen samples of the Cape Roberts-1 drillcore were taken from Miocene- age deposits, from 90.25 - 146.50 metres below seafloor (mbsf) for thin section and laser grain-size analysis. Using the grain-size distribution, detailed core logging, X-radiography and thin-section analysis of microstructures, coupled with a statistical grouping of the grain-size data, three main styles of gravity-flow sedimentation were revealed. Thin (centimetre-scale) muddy debris-flow deposits are the most common and are possibly tirggered by debris rain-out from sea-ice These deposits are characterised by very poorly sorted, faintly laminated muddy sandstones with coarse granules toward their base. Contacts are gradational to sharp. Variations on this style of mass-wasting deposit are rhythmically stacked sequences of pebbly-coarse sandstones representing successive thin debris-flow events. These suggest very high sedimentation rates on an unstable slope in a shallow-water proximal glacimarine environment. Sandy-silty turbidites appear more common in the lower sections of the core, below approximately 141.00 mbsf, although they occur occasionally with the debris flow deposits The turbidites are characterised by inversely to normally graded, well-laminated siltstones with occasional lonestones, and represent a more distal shallow-water glacimarine environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to understand the processes controlling organic carbon deposition (i.e., primary productivity vs. terrigenous supply) and their paleoceanographic significance, three sediment cores (PS2471, PS2474. and PS2476) from the Laptev Sea continental margin were investigated for their content and composition of organic carbon. The characterization of organic matter indudes the determination of buk parameters (hydrogen index values and C/N ratios) and the analysis of specific biomarkers (n-alaknes, fatty acids, alkenones, and pigments). Total organic carbon (TOC) values vary between 0.3 and 2%. In general, the organic matter from the Laptev Sea continental margin is dominated by terrigenous matter throughout. However. significant amounts of marine organic carbon occur. The turbidites, according to a still preliminary stratigraphy probably deposited during glacial Oxygen Isotope Stages 2 and 4, are characterized by maximum amounts of organic carbon of terrigenous origin. Marine organic carbon appears to show enhanced relative abundances in the Termination I (?) and early Holocene time intervals, as indicated by maximum amounts of short chain n-alkanes, short-chain fatty acids, and alkenones. The increased amounts of faity acids, however, may also have a freshwater origin due to increased river discharge at that time. The occurrence of alkenones is suggested to indicate an intensification of Atlantic water inflow along the Eurasian continental margin starting at that time. Oxygen Isotope Stage l accumutation rates of total organic carhon are 0.3, 0.17, and 0.02 C/cm**2/ky in cores PS2476, PS2474, and PS2471, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sedimentary succession drilled at Sites 840 and 841 on the Tonga forearc allows the sedimentary evolution of the active margin to be reconstructed since shortly after the initiation of subduction during the mid Eocene. Sedimentation has been dominated by submarine fan deposits, principally volcaniclastic turbidites and mass-flows derived from the volcanic arc. Volcaniclastic sedimentation occurred against a background of pelagic nannofossil sedimentation. A number of upward-fining cycles are recognized and are correlated to regional tectonic events, such as the rifting of the Lau Basin at 5.6 Ma. Episodes of sedimentation dating from 16.0 and 10.0 Ma also correlate well with major falls in eustatic sea level and may be at least partially caused by the resulting enhanced erosion of the arc edifice. The early stages of rifting of the Lau Basin are marked by the formation of a brief hiatus at Site 840 (Horizon A), probably a result of the uplift of the Tonga Platform. Controversy exists as to the degree and timing of the uplift of Site 840 before Lau Basin rifting, with estimates ranging from 2500 to 300 m. Structural information favors a lower value. Breakup of the Tonga Arc during rifting resulted in deposition of dacite-dominated, volcaniclastic mass flows, probably reflecting a maximum in arc volcanism at this time. A pelagic interval at Site 840 suggests that no volcanic arc was present adjacent to the Tonga Platform from 5.0 to 3.0 Ma. This represents the time between separation of the Lau Ridge from the Tonga Platform and the start of activity on the Tofua Arc at 3.0 Ma. The sedimentary successions at both sites provide a record of the arc volcanism despite the reworked nature of the deposits. Probe analyses of volcanic glass grains from Site 840 indicate a consistent low-K tholeiite chemistry from 7.0 Ma to the present, possibly reflecting sediment sourcing from a single volcanic center over long periods of time. Trace and rare-earth-element (REE) analyses of basaltic glass grains indicate that thinning of the arc lithosphere had begun by 7.0 Ma and was the principle cause of a progressive depletion of the high-field-strength (HFSE), REE, and large-ion-lithophile (LILE) elements within the arc magmas before rifting. Magmatic underplating of the Tofua Arc has reversed this trend since that time. Increasing fluid flux from the subducting slab since basin rifting has caused a progressive enrichment in LILEs. Subduction erosion of the underside of the forearc lithosphere has caused continuous subsidence and tilting toward the trench since 37.0 Ma. Enhanced subsidence occurred during rifting of the South Fiji and Lau basins. Collision of the Louisville Ridge with the trench has caused no change in the nature of the sedimentation, but it may have been responsible for up to 300 m of uplift at Site 840.