237 resultados para Shingon (Sect)
Resumo:
The current study presents quantitative reconstructions of tree cover, annual precipitation and mean July temperature derived from the pollen record from Lake Billyakh (65°17'N, 126°47'E, 340 m above sea level) spanning the last ca. 50 kyr. The reconstruction of tree cover suggests presence of woody plants through the entire analyzed time interval, although trees played only a minor role in the vegetation around Lake Billyakh prior to 14 kyr BP (<5%). This result corroborates low percentages of tree pollen and low scores of the cold deciduous forest biome in the PG1755 record from Lake Billyakh. The reconstructed values of the mean temperature of the warmest month ~8-10 °C do not support larch forest or woodland around Lake Billyakh during the coldest phase of the last glacial between ~32 and ~15 kyr BP. However, modern cases from northern Siberia, ca. 750 km north of Lake Billyakh, demonstrate that individual larch plants can grow within shrub and grass tundra landscape in very low mean July temperatures of about 8 °C. This makes plausible our hypothesis that the western and southern foreland of the Verkhoyansk Mountains could provide enough moist and warm microhabitats and allow individual larch specimens to survive climatic extremes of the last glacial. Reconstructed mean values of precipitation are about 270 mm/yr during the last glacial interval. This value is almost 100 mm higher than modern averages reported for the extreme-continental north-eastern Siberia east of Lake Billyakh, where larch-dominated cold deciduous forest grows at present. This suggests that last glacial environments around Lake Billyakh were never too dry for larch to grow and that the summer warmth was the main factor, which limited tree growth during the last glacial interval. The n-alkane analysis of the Siberian plants presented in this study demonstrates rather complex alkane distribution patterns, which challenge the interpretation of the fossil records. In particular, extremely low n-alkane concentrations in the leaves of local coniferous trees and shrubs suggest that their contribution to the litter and therefore to the fossil lake sediments might be not high enough for tracing the Quaternary history of the needleleaved taxa using the n-alkane biomarker method.
Resumo:
The Nachtigall clay pit near Holzminden, northern Germany, is located in a subrosional basin filled with 43 m of interglacial, interstadial and stadial deposits adjacent to the Weser River. The succession separates the Older Middle Terrace from the Younger Middle Terrace of the Weser River. Nachtigall core KB1 (1998) mainly contains silt and clay with intercalated peat layers. The layers of fen peat and intercalated humic silt are between 36 and 22.5 m depth. According to palynological studies, the peat layers and some humic silts were deposited during interglacial and interstadial periods marked by forest vegetation, termed Nachtigall 1 and Nachtigall 2. They are subdivided by a stadial, termed Albaxen. The peat of Nachtigall 1 is interrupted twice by silt and clay strata (Allochthonous Unit I, II) which are reworked sediments of older glacial periods, possibly of late Elsterian or early Holsteinian age. The palynological sequences of Nachtigall and Göttingen/Ottostrasse show the same pattern. Moreover, the contemporaneous pollen profiles of Nachtigall and Göttingen/Ottostrasse can be compared with the Velay pollen sequence (France). The Nachtigall core section 36-26.02 m corresponds to Bouchet 2 - Bonnefond - Bouchet 3 in Velay. The profiles of Velay and Nachtigall are independently correlated to the MIS-timescale and correspond to MIS 7c, 7b, and 7a. TIMS 230Th/U-dating shows ages ranging from 227 + 9/-8 to 201 + 15/-13 ka, which are in good agreement with the inferred MIS 7 age.