912 resultados para Prairie States Forestry Project (U.S.)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerous veins are present in basalts recovered from Hole 462A, Leg 61 of the Deep Sea Drilling Project. Three mineral assemblages are recognized and stratigraphically controlled. These assemblages are (1) a zeolite-bearing, quartz-poor assemblage which occurs from Core 44 to the bottom of the hole and contains smectite, clinoptilolite, calcite, pyrite, ± chabazite, ± analcime, ± quartz, ± apophyllite, ± talc (?); (2) a quartz-rich, pyrite-bearing assemblage, found between Cores 19 and 29, which contains smectite, calcite, quartz, and pyrite; and (3) a quartz-rich, celadonite-bearing assemblage which occurs from Cores 14 through 17 and contains smectite, calcite, quartz, celadonite, and Fe oxide. These data are interpreted to represent two episodes of vein mineral formation with an oxidative overprint on the more recent. The first episode followed the outpourings of basaltic lavas onto the sea floor. Zeolite-bearing veins were formed at elevated temperatures under low PCO2 while the thermal gradient was high and before a cover of calcareous sediments had formed. The second mineralization episode followed injection of basalt and microdiabase sills into a thick layer of sediments, and produced all the vein minerals now occurring between Cores 14 and 29. These veins formed at lower temperature and higher PCO2 than zeolite-bearing veins. The presence of pyrite indicates a nonoxidative environment. After the initial formation of these veins, oxygenated seawater diffused through the sedimentary cover and oxidized the pyrite and smectite, forming celadonite and Fe oxides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed study of physical properties was made on core samples from Deep Sea Drilling Project Hole 504B. The measured properties are density, porosity, sonic velocity, electrical resistivity, and fluid permeability. Basalts from this young oceanic crust have higher density and sonic velocity than the average DSDP basalts. Porosity (and temperature) dependences of physical properties are given by V = Vo - a-phi; roo = roo-0 exp(E*/RT)phi**-q; k = k0' phi**2q-1; where V is the sonic velocity (km/s), Vo = 6.45 (km/s), a = 0.111 (km/s %), phi is the porosity (%), roo is the electrical resistivity (ohm m), roo-0 = 0.002 (ohm m), E* = 2.7 (Kcal/mol) for fresh basalts, RT has its usual meaning, q = 1.67 ± 0.27, k is the permeability, k0' = (1 to about 10) x 10**-12 (cm**2). Porosity distribution in the crust in this area is estimated by combining the seismic velocity distribution and velocity-porosity relation. Because of the rapid decrease in porosity with depth, resistivity increases and permeability decreases rapidly with depth. The decreasing rate of permeability with increasing depth is approximately given by k(cm**2) = 2 x 10**-10 exp(-z (km)/0.3).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eighty-four sediment samples from four holes at Site 502 and 54 samples from three holes at Site 503 were analyzed for mineral content by semiquantitative X-ray diffraction methods. Site 502 is located in the Western Caribbean, whereas Site 503 lies in the Eastern Pacific (probably on the north flank of the Galapagos Spreading Center). Both sites were chosen to yield continuous core sections for investigations of late Neogene and Quaternary biostratigraphy and magnetostratigraphy and to study events such as the closing of the Isthmus of Panama. Our X-ray diffraction work should provide a framework for further investigations - for example, determination of climatic changes in relationship to clay mineral composition or the influx of terrigeneous sediment components from South America before and after development of the Panama landbridge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interaction between young basaltic crust and seawater near the oceanic speading centers is one of the important processes affecting the chemical composition of the oceanic layer. The formation of metalliferous hydrothermal sediments results from this interaction. The importance of the interaction between seawater and basalt in determining the chemical composition of pore waters from sediments is well known. The influence of mineral solutions derived from this interaction on ocean water composition and the significant flux of some elements (e.g., Mn) are reported by Lyle (1976), Bogdanov et al. (1979), and others. Metal-rich sediments found in active zones of the ocean basins illustrate the influence of seawater-basalt interaction and its effect on the sedimentary cover in such areas. The role of hydrothermal activity and seawater circulation in basalts with regard to global geochemistry cycles has recently been demonstrated by Edmond, Measures, McDuff, McDuff et al. (1979), and Edmond, Measures, Mangum (1979). In the area of the Galapagos Spreading Center the interaction of sediments and solutions derived from interaction of seawater and basalt has resulted in the formation of hydrothermal mounds. The mounds are composed of manganese crusts and green clay interbedded and mixed with pelagic nannofossil ooze. These mounds are observed only in areas characterized by high heat flow (Honnorez, et al., 1981) and high hydrothermal activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pelagic sediments from DSDP Hole 5O3B contain, in their carbonate abundance data, a clear record of glacial-interglacial cycles. The eolian component of those sediments was analyzed over the past four carbonate cycles, and the mass accumulation rate (MAR) and grain size of the eolian component was determined. Eolian MARs range from 24 to 169 mg/cm**2/10**3y. and commonly are higher by a factor of three to five during times of glacial retreat. Reduced contribution during periods of glaciation most likely reflects glacial-age humidity in the American source. Grain-size values (phi50) range from 8.25 to a minimum of 8.79phi-a variation in grain mass by a factor of 3.1. Larger grains reflect more vigorous atmospheric circulation, but sizes do not covary with the carbonate or eolian accumulation curves. These data suggest that the intensity of atmospheric circulation in the tropics may reflect the 42,000 y.-tilt cycle rather than the 100,000 y.-cycle of glacial advance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analyses of water samples taken by means of an in-hole sampler generally show good agreement with analyses of samples collected by routine shipboard squeezing techniques. At Sites 438 and 439, a decrease in salinity with depth is related to former freshwater flow from an aquifer that crops out at an anticline on a deep sea terrace between Japan and the top of the trench slope of the Japan Trench. This former subaerial recharge suggests significant late Cenozoic subsidence of the terrace, because it now lies at a water depth of 1500 meters. Samples from the trench slope at Site 440 have extremely high values of alkalinity and ammonia, presumably because of a favorable combination of high sedimentation rate and organic carbon content. Diagenetic conditions on the trench slope favor formation of the Fe-Mg carbonate mineral, ankerite; at Site 440 it first occurs at a depth below the sea floor of only 29 meters in late Pleistocene strata. Undissolved diatoms persist to relatively great depth at the sites of Leg 57 because of a low geothermal gradient caused by subduction. Secondary silica lepispheres first appear at 851 meters at the most landward and warmest site, Site 438, in strata 16 million years old with an ambient temperature of 31 °C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For Middle Jurassic to Pleistocene times, clay mineralogical and geochemical data provide information on the evolution of continental and marine paleoenvironments. They are a source of information on marginal instability, on the continental and shallow marine environments related to the development of the Southern Ocean during the Middle and Late Jurassic, and on tectonic relaxation of the continental margins at the end of the Late Jurassic. They also provide evidence for the influences of the South Atlantic opening and the movement of the Falkland Plateau in a reduced marine environment until Aptian-Albian times, and the transition to an open marine environment during Albian time; the influences of the Albian-Turonian and Coniacian-Santonian Andean deformations in an open marine environment; the limited tectonic effects and strong influence of marine currents at the Cretaceous/Tertiary boundary; the influences of the global climatic cooling and inferred bottom water circulation during the late Eocene and Oligocene; the widening of the South Atlantic Ocean during Oligocene time, which was accompanied by an increased influence of the biogenic components on sedimentation; increased carbonate dissolution from late Oligocene to early Miocene, related to the deepening of the ocean; limited mineralogical and important geochemical modifications when the Drake Passage opened in the early Miocene; the influence of the late Miocene development of the Antarctic ice-sheet; the major Antarctic cooling and Patagonian glaciation during Pliocene time; and the change in the Antarctic Bottom Water circulation at the Pliocene/Pleistocene boundary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insoluble residues of Late Cretaceous to Quaternary deep-sea samples from slope, trench, and oceanic plate sites south of Guatemala were examined, specifically for the distribution of clay minerals in the <2-µm fraction and of silt grains in the 20-63-µm fraction. Widespread "oceanic" particles (biogenic opal, rhyolitic glass) and their diagenetic products (smectite, clinoptilolite, heulandite) were distinguished from terrigenous material - illite, kaolinite, chlorite, plagioclase, quartz, and heavy minerals. The main results of this investigation are: (1) At Site 494 on the slope immediately adjacent to the trench, terrigenous supplies testify to a slope position of the whole sequence back to the Late Cretaceous. (2) At Site 495 on the Pacific Cocos Plate, "oceanic" and terrigenous sedimentation are clearly separated. Whereas the pelagic sedimentation prevailed in the early Miocene, terrigenous minerals appeared in the middle Miocene in the clay fraction, and in the early Pliocene in the coarse silt fraction. These terrigenous supplies are interpreted as having been transported by suspension clouds crossing the slope and even the trench. The alternative, however, an eolian transport, cannot be excluded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A total of 1547 thermal conductivity values were determined by both the NP (needle probe method) and the QTM (quick thermal conductivity meter) on 1319 samples recovered during DSDP Leg 60. The NP method is primarily for the measurement of soft sedimentary samples, and the result is free from the effect of porewater evaporation. Measurement by the QTM method is faster and is applicable to all types of samples-namely, sediments (soft, semilithified, and lithified) and basement rocks. Data from the deep holes at Sites 453, 458, and 459 show that the thermal conductivity increases with depth, the rate of increase ranging from (0.18 mcal/cm s °C)/100 m at Site 459 to (0.72 mcal/cm s °C)/100 m at Site 456. A positive correlation between the sedimentary accumulation rate and the rate of thermal conductivity increase with depth indicates that both compaction and lithification are important factors. Drilled pillow basalts show nearly uniform thermal conductivity. At She 454 the thermal conductivity of one basaltic flow unit was higher near the center of the unit and lower toward the margin, reflecting variable vesicularity. Hydrothermally altered basalts at Site 456 showed higher thermal conductivity than fresh basalt because secondary calcite, quartz, and pyrite are generally more thermally conductive than fresh basalt. The average thermal conductivity in the top 50 meters of sediments correlates inversely with water depth because of dissolution of calcite, a mineral with high thermal conductivity, from the sediments as the water depth exceeds the lysocline and the carbonate compensation depth. Differences between the Mariana Trench data and the Mariana Basin and Trough data may reflect different abundances of terrigenous material in the sediment. There are remarkable correlations between thermal conductivity and other physical properties. The relationship between thermal conductivity and compressional wave velocity can be used to infer the ocean crustal thermal conductivity from the seismic velocity structure.